COMMON FIRST MID - TERM TEST - 2019

STANDARD - XII MATHEMATICS

	Tie.	200		
Reg.No.			963	
			2	2.
			 	377

Time: 1.15 hours

PART-I

Note: i)	All quest	ions are	compul	sory:
----------	-----------	----------	--------	-------

- ii) Choose the most appropriate answer from the given four alternatives and write option code and answer. 10×1=10
- 1. If A, B, and C are invertible matrices of some order, then which one of following is not true?
 - a) $adj A = |A| A^{-1}$

b) adj (AB) = (adjA) (adjB)

c) $det A^{-1} = (det A)^{-1}$

d) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$

2. If $A = \begin{bmatrix} \cos\theta & -\sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ and $A(adjA) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$ then $k = \frac{1}{2}$

- b) sina
- c) cose
- d) 1

3. If A is non-singular matrix of order 3 then |adj (adjA)| =

- a) $|A|^2$ b) $|A|^3$ c) $|A|^4$
- d) |A|
- 4. If P(A) = P(A|B) = 2. Then the system Ax = B of linear equation is
 - a) consistent and has a unique solution

- b) consistent
- c) consistent and has infinitely many solution
- d) inconsistent

5. The value of $\sum_{i=1}^{13} (i^n + i^{n-1})$ is

a) 1 + i

c) 1

d) 0

6. If |Z| = 1, then the value of $\frac{1+Z}{1+Z}$ is

a) z

- c) $\frac{1}{z}$
- d) 1

7. The value of i i².i³.i⁴ i²⁰²⁰

a) (

- c) -1
- d) none
- 8. A polynomial equation in x of degree n always has

a) n distinct roots

b) n real roots

c) n imaginary roots

- d) atmost one root
- 9. The polynomial $x^3 kx^2 + 9x$ has three real zeros and if and only if, k satisfies a) $|k| \le 6$ b) k = 0 c) |k| > 6

- d) |k| ≥ 6
- 10. If α , β , γ are the roots of $9x^3 7x + 6 = 0$ then $\alpha\beta\gamma$ is

c) 0

d) $-\frac{2}{3}$

PART-II

Note: i) Answer any three questions.

ii) Question number 15 is compulsory.

11. Prove that $|\sin \theta| \cos \theta$ is orthogonal.

12. If adj (adj A) = $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ then find A.

13. Simplify: $\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3$ into rectangular form.

14. Find the square root of -5 - 2i

15. Construct a cubic equation whose roots are 1, 1, -2.

PART-III

Note: i) Answer any three questions.

ii) Question number 20 is compulsory.

3×3=9

16. Find the rank of matrix $\begin{vmatrix} 2 & -1 & 3 & 4 \\ 5 & -1 & 7 & 11 \end{vmatrix}$ by row reduction method.

17. If Z = 1 + i be a vertex of square in a argand plane, then find the other vertices.

18. In a competitive examination, one mark is awarded for every correct answer while 1/4 mark is deducted for every wrong answer. A student answered 100 questions and got 80 marks. How many questions did he answer correctly? (Use

19. Obtain the condition that the roots of $x^3 + px^2 + qx + r = 0$ are in A.P.

20. Show that the equation $z^3 + 2\overline{z} = 0$ has five solution.

PART-IV

4×5=20

21. Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find time taken by one man alone and that of one women alone to finish the same work by using matrix

Find the value of k for which the equation kx - 2y + z = 1, x - 2ky + z = -2, x - 2y + kz = 1 have i) No solution ii) unique solution

22. By using Gaussian elimination method, balance the chemical reaction equation $C_5H_8 + O_2 \rightarrow CO_2 + H_2O$

If z = x + iy is a complex number such that $Im\left(\frac{2z+1}{iz+1}\right) = 0$. Show that the locus of Z is $2x^2 + 2y^2 + x - 2y = 0$.

23. If
$$\frac{1+z}{1-z}\cos 2\theta + i\sin 2\theta$$
, show that $z = i \tan \theta$ (OR)

24. If α , β , γ are the roots of the cubic equation $x^3 + 2x^2 + 3x + 4 = 0$, form a cubic

equation whose roots are $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$. (OR)

Find all real numbers satisfying $4^x - 3(2^{x+2}) + 2^5 = 0$.