COMMON FIRST MID - TERM TEST - 2019

STANDARD - XII

Time: 1.30 hours

PHYSICS

Reg.No. Marks: 50

PART - A

Answer all the questions:

10×1=10

12-A

- 1. Which charge configuration produce a uniform electric field?
 - a) point charge

- b) infinite uniform line charge
- c) uniformly charged infinite plane
- d) uniformly charged spherical shell
- 2. Three capacitors are connected in triangle as shown in the figure. The equivalent capacitance between the points A and C is

- a) 1μF
- b) 2μF
- d) 1/4 uf
- 3. Which of the following quantity is a scalar?
 - a) Electric force b) Electric field
- c) Electric potential d) Dipole moment
- 4. The unit of dipole moment is
 - a) Cm⁻¹
- b) C⁻¹m
- c) Cm

- d) NC⁻¹
- 5. A toaster operating at 240v has a resistance of 120Ω . The power is
 - a) 400w
- b) 2w

- c) 480w
- d) 240w
- 6. What is the value of resistance of the following resistor?
 - -a) 100kΩ
- b) 10kΩ
- c) 1kΩ
- 7. What is the current out of the battery? $5v \pm \frac{1}{2}$ ₹ 15Ω ₹15Ω
 - a) 1A

b) 2A

c) 3A

- 8. A circular coil of radius 5cm and has 50 turns carries a current of 3 ampere. The magnetic dipole moment of the coil is
 - a) 1.0 amp-m²
- b) 1.2 amp m^2
- c) 0.5 amp m²
 - d) 0.8 amp -m²
- 9. The value of horizontal component of Earth's magnetic field at equator is
 - a) Minimum
- b) zero
- c) finite
- d) Maximum
- 10. A wire of length ℓ carries a current I along the y direction and magnetic field is given by $\vec{B} = \frac{B}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k})$. The magnitude of Lorentz force acting on the wire is
 - a) $\sqrt{\frac{2}{3}}$ BIe
- b) $\sqrt{\frac{1}{3}}$ BI?
- c) √2 BIℓ
- d) $\sqrt{\frac{1}{2}}$ BI ℓ

PART - B

Answer any 5 questions. Question No.14 is compulsory:

5×2=10

- 11. Define: "Electric dipole"
- 12. State Coulomb's law in electrostatics?
- 13. Mention the applications of capacitors?
- 14. Determine the number of electrons flowing per second through a conductor, when a current of 32A flows through it.
- 15. State the principle of potentiometre?
- 16. What is magnetic susceptibility?
- 17. Compare dia para and ferro magnetism?

PART - C

Answer any five questions. Question No.20 is compulsory:

5×3=15

- 18. Derive an expression for electrostatic potential due to a point charge?
- 19. Obtain Gauss law from Coulomb's law?
- 20. A parallel plate capacitor has square plates of side 5cm and separated by a distance of 1 MM. Calculate the capacitance of this capacitor.
- 21. State Macroscopic form of Ohm's law.
- 22. State the application of seebeek effect.
- 23. Compute the torque experienced by a magnetic needle in a uniform magnet field?
- 24/ Discuss the conversion of galvanometre in to an ammetre and also a volt meter.

PART - D

Answer all the questions in detail:

3×5=15

- ~25. a) Derive an expression for electrostatic potential due to an electric dipole? (OR)
 - b) Obtain the condition for bridge balance in Wheatstone's bridge?
- 26. a) Explain in detail the construction and working of a Vande Graaft generator?

 (OR)
 - b) Explain the equivalent resistance of a series and parallel resistor net work?
- .27. a) Deduce the relation for the magnetic induction at a point due to an infinity long straight conductor carring current.

(OR)

b) Discuss the working of cyclotron in detail?

Contact: 80988 50809

P= 1. 20mp-m2

SAIVEERA TUITION CENT

Revolution for Learning

191, V.K.ROAD, NEAR BLACK MARIAMMAN KOVIL, PEELAMEDU, COIMBATORE - 641 004.

We Teach 11th & 12th Maths, Physics, Chemistry and Biology 1st Standard to 10th All Subjects

1. c)
$$E = \frac{6}{260}$$
 [does not contains x term]

2. $C_1 = 1.4F$ $C_2 = 2.4F$ $C_3 = 2.4F$ $C_3 = 2.4F$ $C_3 = 2.4F$ $C_3 = 1.4F$ $C_3 = 1.4F$ $C_4 = 1.4F$ $C_5 = 1.4F$ $C_7 = 1.4F$

9. di naximum

14.

o)
$$F = ILXB$$
 a) $\sqrt{\frac{2}{3}}RIL$.
 $I \rightarrow y \text{ direction if}$
 $Il = iIL$
 $ILXB = B(JL)X(J+J+k)$
 $ILXB = B(JL)X(J+J+k)$

$$I = 3RA \quad n = ? \quad t = 1S$$

$$I = 9 = ne$$

$$\overline{t} = \frac{ne}{t}$$

$$\frac{32}{1.6} \times 10^{19} = 0$$

$$\frac{32}{1.6} \times 10^{20} = 0$$

$$= \frac{\beta_1^2 \ell}{\sqrt{3}} \left(\frac{3}{3} x_1^3 + \frac{3}{3} x_1^3 \right)$$

$$= \frac{\beta_1^2 \ell}{\sqrt{3}} \left(-\frac{k^2 + 6 + 7}{4 + 6 + 7} \right)$$

$$= \frac{\beta_1^2 \ell}{\sqrt{3}} = \frac{\beta_1^2 \ell}{\sqrt{3}} \ell$$

$$= \frac{\beta$$

20.

 $a = 5 \times 10^{2} \text{m}$ $C = \frac{80 \text{ A}}{d}$ $A = a^{2} = 25 \times 10^{-12} \text{m}$ $C = 8.854 \times 10^{-12} \times 10^{-12}$

C - 221.35 x 10 F