Mathematics X

Answers of First Terminal Examination 2023

2 score

Answer any three

1) This is an open question.Students can write their own sequence and its 10 th term. The first term should be 3 .
An example is given below
a) $3,5,7 \cdots$
b) $x_{n}=2 n+1 \rightarrow x_{10}=2 \times 10+1=21$

(or)

$$
x_{10}=f+9 d=3+9 \times 2=21
$$

2) Side of the enlarged square is $=\sqrt{81}=9$

Side of the first square $9-2=7 \mathrm{~m}$
(or)
If side of the first square x then $(x+2)^{2}=81$
$x+2= \pm \sqrt{81}, x=9,-9$
$x+2=9 \rightarrow x=7$.Side of the first square is 7 m
3) a) 9
b) $\frac{3}{9}$
4) a) 60°
b) $\frac{1}{2} \times 60=30^{\circ}$
b) $103-4=99$

99 is a multiple of common difference. 103 is a term of the sequence
(or)
Common difference is 3 .
$4 \div 3 \rightarrow$ remainder 1 ,
$103 \div 3 \rightarrow$ remainder 1
103 is a term of the sequence.
(or)
Algebraic form of the sequence is $3 n+1$
$103=34 \times 3+1$.
103 is the 34 th term of the sequence .
6) a) Consecutive multiples of 8 are x and $x+8$
$x(x+8)=384$
$x^{2}+8 x+16=384+16,(x+4)^{2}=400, x+4= \pm \sqrt{400}$.
$x+4=20 \rightarrow x=16$ (Multiples are positive integers)
Multiples of 8 are 16, 24

(or)

Two consecutive multiples are $x-4$ and $x+4$
$(x-4)(x+4)=384, x^{2}-4^{2}=384$
$x^{2}-16=384, x^{2}=400, x=20$
7) a) $\frac{4}{10}$
b) $\frac{3}{10}$
c) $\frac{6}{11}$
8) Steps of construction.Students are expected to follow these steps for the constucting the triangle.
\star Draw a circle of radius 4 cm .
\star Divide the angle around the centre as $2 \times 60=120^{\circ}, 2 \times 80=160^{\circ}$ by drawing radii
\star Join the ends of the radii. It makes the triangle.
9) a) Sum of first 30 terms $=\frac{30(30+1)}{2}=15 \times 31=465$
b) Sum $=2(1+2+3 \cdots+30)=2 \times 465=930$
c) $5+7+9+\cdots+63=(2+3)+(4+3)+(6+3)+\cdots+(60+3)$ $=(2+4+6+\cdots+60)+30 \times 3=930+90=1020$
(or)
There are 30 terms in the sequence $5,7,9, \cdots 63$ as each term is 3 more than the terms of $2,4,6 \cdots 60$

Terms can make into 15 pairs taking terms equidistant from both ends. Pair sum is $5+63=68$
Sum of terms $15 \times 68=1029$

(or)

Sum $=\left(x_{1}+x_{n}\right) \times \frac{n}{2}$
Sum $=(5+63) \times \frac{30}{2}=68 \times 15=1020$
10) a) $P B=16-10=6$
b) $P C \times P D=P A \times P B=16 \times 6=96$
c) $P C \times P D=96 \rightarrow P C \times 8=96, P C=\frac{96}{8}=12$

4 score
Answer any eight
11) a) $1-\frac{1}{3}=\frac{2}{3}$
b) Number of green beads is $\frac{1}{3} \times 27=9$
c) When 5 blue beads are added, number of beads becomes 32 . Probability of getting green beads $\frac{9}{32}$
12) Consider first 13 terms. Sum of the terms equidistant from both ends are equal. Middle term is half of the pair sum .
a) $x_{7}=\frac{x_{5}+x_{9}}{2}=\frac{58}{2}=29$
b) $x_{1}+x_{13}=x_{5}+x_{9}=58$
c) Sum of first 13 terms $=x_{7} \times 13=29 \times 13=377$
13) a) $\angle C B O=40^{\circ}$.
b) $\angle B O C=180-80=100^{\circ}$
c) $\angle B A C=\frac{1}{2} \times 100=50^{\circ}$
d) $\angle B D C=180-50=130$
14) a) 12 cm
b) $12-x$
c) $x(12-x)=35 \rightarrow x^{2}-12 x=-35$
) $x^{2}-12 x+36=-35+36 \rightarrow(x-6)^{2}=1, x-6=1, x=7$
Sides are 7 cm and 5 cm
15) a) $P A \times P B=P C^{2} \rightarrow 5 \times 3=P C^{2}$ $P C=\sqrt{15}$
b) Steps of onstruction

Draw a line of length 8 cm , say $A B=8 \mathrm{~cm}$
Draw a semicircle with diameter $A B$
Mark a point on $A B$ such that $A P=5, B P=3$. Draw perpendicu lar to $A B$ at P
The perpendicular line cut the semicircle at C. Draw the equilateral triangle with side $P C$ which is $\sqrt{15} \mathrm{~cm}$
16) $f=5 \times 1-3=2, d=5$
a) $2,7,12 \ldots$
b) $5 n-3=122 \rightarrow 5 n=125, n=\frac{125}{5}=25$
c) 13 th term will be the middle term. $x_{13}=5 \times 13-3=62$ Sum of first 25 terms $=x_{13} \times 25=62 \times 25=1550$
(or)
$x_{25}=5 \times 25-3=122$
Sum $=\left(x_{1}+x_{25}\right) \times \frac{25}{2}=(2+122) \times \frac{25}{2}=124 \times \frac{25}{2}=62 \times 25=$ 1550
(or)
Consider first 25 terms. By pairing terms equidistant from both ends pair sum will be 124 . Middle term will be 62 without pair .
Sum $=124 \times 12+62=1550$
17) a) $P C=15-3=12$
b) $P A=13-x$
c) $P A \times P B=P C \times P D$

$$
\begin{aligned}
& (13-x) \times x=12 \times 3,13 x-x^{2}=36 \\
& -x^{2}+13 x=36, x^{2}-13 x=-36 \\
& x^{2}-13 x+\left(\frac{13}{2}\right)^{2}=-36+\frac{169}{4} \\
& \left(x-\frac{13}{2}\right)= \pm \sqrt{\frac{25}{4}}=\frac{-5}{2}, \frac{5}{2} \\
& x-\frac{13}{2}=\frac{5}{2} \rightarrow x=\frac{18}{2}=9 \\
& x-\frac{13}{2}=\frac{-5}{2} \rightarrow x=\frac{8}{2}=4
\end{aligned}
$$

Since $P B$ is shorter length in the figure $P B=4 \mathrm{~cm}$
(or)
The equation $x^{2}-13 x+36=0$ can be solved using formula.
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \rightarrow x=4,9$
Since $P B$ is the shorter length in the figure, $P B=4 \mathrm{~cm}$
18) Let x be the side of the square
$x^{2}+4 x=221, x^{2}+4 x+4=221+4 \rightarrow(x+2)^{2}=225$
$x+2= \pm \sqrt{225} \rightarrow x=15,-15$
$x=15-2=13$. Side of the square is 13
Area of the square is $13^{2}=169$ itemize
19) Number of chairs in the semicircles are in arithmetic sequence.
a) $100,110,120 \cdots$ is the sequence $. f=100, d=10$
$x_{15}=f+14 d=100+14 \times 10=240$
b) Total number of chairs $=\left(x_{1}+x_{15}\right) \times \frac{15}{2}=(100+240) \times \frac{15}{2}=$ $340 \times \frac{15}{2}=170 \times 15=2250$

(or)

In this sequence $x_{n}=10 n+90$
Middle term is $x_{8}=10 \times 8+90=170$
Sum of terms(total number of chairs) $x_{8} \times 15=170 \times 15=2250$ itemize
20) a) $\angle A B C=180-75=105^{\circ}$
b) $\angle B C D=180-70=110^{\circ}$
c) $\angle A D C=180-105=75^{\circ}$
d) $\angle A D Q=180-75=105^{\circ}$
21) a) $x_{15}=4+14 d=4+14 \times 5=74$ Sum $=\left(x_{1}+x_{15}\right) \times 15=(4+74) \times \frac{15}{2}=39 \times 15=585$
$x_{8}=4+7 d=4+7 \times 5=39$
Sum $=x_{8} \times 15=39 \times 15=585$
b) The terms of the arithmetic sequence $7,12,17 \cdots$ are 3 more than the terms in the same position of the sequence $4,9,14 \cdots$.

The difference is $15 \times 3=45$

5 score

Answer any six

22) a) $60 \times 50=3000$
b) Class A : Boys 30 , Girls 30

Class B : Boys 30, Girls 20
Probability of selecting one boy and one girl $=\frac{30 \times 20+30 \times 30}{3000}=\frac{1500}{3000}=$ $\frac{1}{2}$
c) Probability of selecting both boys $=\frac{30 \times 30}{3000}=\frac{900}{3000}=\frac{3}{10}$
d) Probability of selecting atleast one girl $=1-\frac{3}{10}=\frac{7}{10}$

(or)

Probability of selecting atleast one girls $=\frac{30 \times 20+30 \times 20+30 \times 30}{3000}=$ $\frac{2100}{3000}=\frac{7}{10}$
23) Steps of construction

Draw the rectangle $A B C D$ in which $A B=6 \mathrm{~cm}, B C=4 \mathrm{~cm}$ Produce $A B$ to E such that $B C=B E$.
Draw a semicircle with $A E$ as the diameter. Extent $B C$ to the semicircle at F.
$B F^{2}=B A \times B E \rightarrow B F^{2}=B A \times B C$ Draw a square with $B F$ as the side.

Area of rectangle is same as the area of the square.
24) a) $x_{n}=d n+(f-d)=4 n+(7-4)=4 n+3$
b) $7 \div 4 \rightarrow$ gives the remainder 3 . When the terms are divided by 4 the remainder will be 3

c) Proof

$x_{n}=4 n+3$. Square of nth term is $(4 n+3)^{2}=16 n^{2}+24 n+9$ $16 n^{2}+24 n+9=16 n^{2}+24 n+8+1 \rightarrow 4\left(4 n^{2}+6 n+2\right)+1$. This is not in the form of $4 n+3$.

Moreover, square of nth term gives the remainder 1 on dividing by 4.Because it is 1 more than a multiple of 4 for any natural number n Since the remainder is not 3 we can say square of a term is not in the sequence.

There is a mistake in english medium paper. For c part another sequence is given. It is $4,7,10 \cdots$. Its nth term is $3 n+1$. Square of nth term is $9 n^{2}+6 n+1=3\left(3 n^{2}+2 n\right)+1$. This is also in the form of its nth term. So we can say square of its nth term is also a term of the sequence.
25) a) In right triangle $Q P C, P C^{2}=13^{2}-5^{2}=144, P C=12 \mathrm{~cm}$
b) In right triangle $C P B, P B^{2}=15^{2}-12^{2}=81, P B=9 \mathrm{~cm}$
c) $P A \times P B=P C^{2}=144$
d) $P A \times 9=144, P A=16 \mathrm{~cm}$
$A B=P A+P B=25 \mathrm{~cm}$
26) a) $f=8$
b) $x_{n}=248$

Sequence is $8,12,16 \cdots 248$
$4 n+4=248 \rightarrow 4 n=244, n=61$
d) Since there are 61 terms 31 st term will be the middle term. $x_{31}=$ $4 \times 31+4=124+4=128$

Sum of 61 terms $=x_{31} \times 61=128 \times 61=7808$
$f=8, x_{n}=248, n=61$
Sum of first n terms $=\left(x_{1}+x_{n}\right) \times \frac{n}{2}=256 \times \frac{61}{2}=128 \times 61=7808$
27) a) $\angle P R Q=50^{\circ}$
b) $\angle P R S=65^{\circ}$
c) $\angle R Q S=35^{\circ}$
d) $\angle Q P R=180-(50+35+65)=30^{\circ}$
e) $180-(65+35)=180-100=80^{\circ}$
28) a) $f=2 \times 1^{2}+3 \times 1=5$
b) $d=2 \times 2=4$
c) $x_{n}=d n+(f-d)=4 n+(5-4)=4 n+1$
d) 13 th term is the middle term. $x_{13}=4 \times 13+1=53$

Sum of first 25 terms $=x_{13} \times 25=53 \times 25=1325$

(or)

$x_{25}=4 \times 25+1=101$
Sum of first 25 terms $=\left(x_{1}+x_{25}\right) \times \frac{25}{2}=(5+101) \times \frac{25}{2}=1325$ 29)
a) $2^{0}+2^{1}+2^{2}+2^{3}+2^{4}=1+2+4+8+16=31=2^{5}-1$
b) $2^{0}+2^{1}+2^{2}+\cdots+2^{10}=2^{11}-1$
c) $2^{0}+2^{1}+2^{2}+\cdots+2^{20}=2^{21}-1$
d) $2^{0}+2^{1}+2^{2}+\cdots+2^{n}=2^{n+1}-1$
e) $63=64-1=2^{0}+2^{1}+2^{2}+2^{3}+2^{4}+2^{5}=2^{6}-1$

[^0]
[^0]: ${ }^{1}$ Prepared by Rajesh M, John P A

