

15	$\begin{aligned} & m=4 \mathrm{~kg}, \mathrm{~h}=2 \mathrm{~m}, \mathrm{v}=2 \mathrm{~m} / \mathrm{s} \\ & \mathrm{U}=\mathrm{mgh}=4 \times 10 \times 2=80 \mathrm{~J} \\ & \mathrm{~K}=1 / 2 \mathrm{mv}^{2}=1 / 2 \times 4 \times 2^{2}=8 \mathrm{~J} \end{aligned}$ Potential energy is more	3
16	a. At pole b. At equator (At centre of earth, weight $=0$) c. Weight $=\mathrm{mg}$, value of g is maximum at pole and minimum at equator, value of g is zero at centre of earth)	3
17	$\begin{aligned} & m=10 \mathrm{~kg} \\ & \mathrm{~h}=5+3=8 \mathrm{~m} \\ & \mathrm{U}=\mathrm{mgh}=10 \times 10 \times 8=800 \mathrm{~J} \end{aligned}$	3
18	a. i) Common balance ii) Spring balance b. Spring balance c. 1 kgwt is the force of attraction by the earth on an object of mass 1 kg	3
19	a. $a=v-u / t=20-0 / 10=2 \mathrm{~m} / \mathrm{s}^{2}$ b. $F=m a=1000 \times 2=2000 \mathrm{~N}$	3
20	a. To increase the force by decreasing time (Force is inversely proportional to time) b. To decrease the force by increasing time c. Inertia of motion d. Inertia increases with increasing mass	4
21	a. The acceleration experienced by an object in a circular motion, along the radius, towards the centre. b. $\mathrm{Fc}=\mathrm{mv}^{2} / \mathrm{r}$, here $\mathrm{m}=4 \mathrm{~kg}, \mathrm{v}=5 \mathrm{~m} / \mathrm{s}, \mathrm{r}=2 \mathrm{~m}$ $\mathrm{Fc}=4 \times 5^{2} / 2=50 \mathrm{~N}$ c. The hammer will thrown off along the tangent at that point.	4
22	a. J-joule b. Zero (because $h=0$) c. $W=m g h=5 \times 10 \times 2=100 \mathrm{~J}$ d. i. Positive ii. Negative	4
	pared by NK Ibrahim Wafy, HST physics, Malabar Wafy International School, Kottakkal, Malappuram	IB Adoor, Kannur

