SECOND YEAR HIGHER SECONDARY 2nd TERMINAL EXAMINATION DEC 2022

CHEMISTRY - ANSWER KEY (Question Code: 2025)

Qn. No.	Sub Qns.	Answer Key/Value Points	Score	Total
	Answer any 4 questions from 1 to 5. Each carries 1 score. (4 x 1 = 4)			
1.		Molarity	1	1
2.		(d) 0.0 V	1	1
3.		(b) 1	1	1
4.		(c) $C_2O_4^{2-}$	1	1
5.		Phosgene OR, Carbonyl chloride OR, COCl ₂	1	1
		Answer any 8 questions from 6 to 15. Each carries 2 scores. (8 x 2 = 16)		
6.		Henry's law states that at constant temperature, the solubility of a gas in a liquid is		
		directly proportional to the pressure of the gas.		
		OR, at constant temperature, the partial pressure of the gas in vapour phase is	1	
		proportional to the mole fraction of the gas in the solution.		2
		Application: In the preparation of soda water and soft drinks/ medical condition	1	
		known as bends in scuba divers/ medical condition known as anoxia in people living	1	
		at high altitudes or climbers.		
7.		Two solutions having same osmotic pressure at a given temperature, are called	1	
		isotonic solutions.		2
		E.g.: 0.9% (mass/volume) NaCl solution is isotonic with the fluid inside our blood cell.	1	
8.		Van't Hoff factor (i) is defined as:		
		$i = \frac{\text{Normal molar mass}}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$		
		$1 - \frac{1}{\text{Abnormal molar mass}}$		
		Observed colligative property	1	
		$= \frac{\text{Observed congative property}}{\text{Calculated colligative property}}$	1	2
				2
		$i = \frac{\text{Total number of moles of particles after association/dissociation}}{1}$		
		Number of moles of particles before association/dissociation		
		It is used to correct the abnormal molar mass of solute.	1	
		Normal molar mass = i x abnormal molar mass	_	
9.		Rate of a reaction is the change in concentration of any one of the reactants or	1	
		products in unit time.		
		Factors affecting rate of a reaction are nature of the reactants, concentration of the	1	2
		reactants, temperature, pressure, catalyst and radiation		
10		[Any 2 required]	4	
10.		The reaction which appears to follow higher order but actually follows first order		
		kinetics is called pseudo first order reaction.	1	2
11	(:)	E.g.: Inversion of cane sugar, Hydrolysis of ester etc. [Any one example required]	1	
11.	(i)	1 (unimolecular)	1	2
	(ii)	2 (bimolecular)	1	

12.	(i)	(n-1)d ¹⁻¹⁰ ns ⁰⁻²	1		
	(ii)	There is no partially filled d orbitals in the ground state or in the common oxidation	1	2	
		state of zinc.			
13.		(i) d and f block elements and their compounds are used as catalysts.			
		(ii) Iron and steels are important construction materials.			
		(iii) Cu, Ag, Au and some alloys are used for making coins.		2	
		(iv) TiO is used in pigment industry.		2	
		 (v) Zn, Ni, Cd, MnO₂ etc are used in making batteries. (vi) Compounds of Ag are used in photography. [Apy 2 required] 			
		(vi) Compounds of Ag are used in photography. [Any 2 required]			
14.		Complexes which contain only one type of ligand are called homoleptic complexes.			
		E.g.: $[Co(NH_3)_6]^{3+}$, $[Fe(CN)_6]^{4-}$, $[Ni(CO)_4]$ etc. Complexes which contain more than one type of ligands are called heteroleptic 2 2			
		Complexes which contain more than one type of ligands are called heteroleptic22complexes. e.g., [Co(NH ₃) ₄ Cl ₂] ⁺ , [Pt(NH ₃) ₂ Cl ₂] etc.2			
		[Any one example for each is required]			
15.		A is o-nitrochlorobenzene [1-chloro-2-nitrobenzene]	1		
		B is p- nitrochlorobenzene [1-chloro-4-nitrobenzene]	1		
		OR	1		
		Cl Cl Cl			
		$\begin{array}{c} HNO_{3} \\ \hline \\ $		2	
		1-Chloro-2-nitrobenzene NO ₂			
		(Minor) 1-Chloro-4-nitrobenzene			
		(Major)			
		Answer any 8 questions from 16 to 25. Each carries 3 scores. (8 x 3 = 24)	1 1		
16	(i)	These are solutions which obey Raoult's law at all concentrations.	1		
		E.g. solutions of n-hexane and n-heptane, bromoethane and chloroethane, benzene	1/2		
	(::)	and toluene etc. [Any one example is required]			
	(ii)				
		Vapour pressure of solution			
		g		3	
		Vapour pressure	1½	5	
		P_2	1/2		
		nod			
		$x_{i} = 0$ Mole fraction $x_{i} = 1$			
		$x_{2=1}$ $x_{1} \rightarrow x_{2=0}$			
17.		Cell representation is: Mg Mg ²⁺ Ag ⁺ Ag	1		
		$E_{cell} = E_{cell}^0 - 0.0591 \log[Mg^{2+}]$			
		$\frac{1}{2} [Ag^+]^2$	1	3	
		$= 3.17 - 0.0591 \log (0.13) (0.201)^2$		-	
		$2 (0.001)^2$	1		
		= 3.17 – 0.15 = 3.02 V			

		(b) $K_2[Zn(OH)_4]$	1		
	(ii)	(a) $[Co(NH_3)_4(H_2O)CI]Cl_2$	⁷ 2 1		
23.	(i)	Oxidation state of Co is +3 and Co-ordination number of Co is 6.	1/2 1/2	3	
	(*)	[Any 2 required]	47		
		(ii) Lanthanides have similar physical properties and they occur together in nature.(iii) Basicity of hydroxides decreases from Lanthanum to Lutetium.			
		(i) The 2 nd and 3 rd row transition series elements have similar radii.	2	3	
		The consequences of Lanthanoid contraction are:			
		lanthanide contraction.	1		
22.		The regular decrease in the atomic and ionic radii along lanthanide series is known as			
	(iii)	This is due to the similar atomic radii of transition elements.	1		
	(11)	orbitals and ability to show variable oxidation state.	T	3	
21.	(i) (ii)	This is due to the presence of partially filled d-orbitals or due to d-d transition. This is due to their smaller size, high ionic charge, presence of partially filled d	1 1		
		k			
		Or, t _{1/2} = 0.693			
		$\frac{1}{k} = \frac{2.303}{k} \frac{1000}{1000}$			
		$t_{\frac{1}{2}}$ [R] ₀ /2 Or, $t_{\frac{1}{2}}$ = 2.303 log2 = 2.303 x 0.3010			
		$k = 2.303 \log[R]_0$	2	3	
		Substitute these values in the above equation, we get:			
		When t = $t_{\frac{1}{2}}$, [R] = [R] ₀ /2			
	()	$\frac{1000}{t} \frac{1000}{R}$			
	(ii)	t [R] For a first order reaction, k = 2.303 log[R]₀			
20.	(i)	The integrated rate equation for a first order reaction is, $k = \frac{2.303}{4} \log \frac{[R]_0}{R}$	1		
		with anti-rust solution. (iv) by sacrificial protection or cathodic protection. [Any 2 methods are required]			
		(ii) coating the metal with more electropositive metal (E.g. Galvanisation) (iii) coating			
	(ii)	Corrosion can be prevented by (i) coating the metal surface with paint, varnish etc.	1	3	
	(::)	ferric oxide (Fe ₂ O ₃ . x H ₂ O), which is called rust.			
		The ferrous ions (Fe^{2+}) are further oxidised to ferric ions (Fe^{3+}) and finally to hydrated			
		The overall reaction is: $2Fe(s)+O_2(g) + 4H^+(aq) \rightarrow 2Fe^{2+}(aq)+2H_2O(I)$			
		Cathode reaction: $O_2(g) + 4 H^+ (aq) + 4 e^- \rightarrow 2 H_2O(l)$	1		
19.	(i)	Anode reaction: 2 Fe (s) \rightarrow 2 Fe ²⁺ + 4 e ⁻	1		
	(iii)	It states that the limiting molar conductivity of an electrolyte is the sum of the individual contributions of the anion and the cation of the electrolyte.	1		
	(ii)	Kohlrausch law of independent migration of ions OR, Kohlrausch law.	1	3	
		dilution.			
18.	(i)	It is the molar conductivity of an electrolytic solution at zero concentration or infinite	1		

24.	(i)	^			
24.	(ii)	Metal d orbitals d orbitals free metal ion spherical cry It is a series in which the various ligands are field strength.	oitals in in octahedral rstal field crystal field	2	3
25.					
		S _N 1 Mechanism	S _N 2 Mechanism		
		Proceeds in 2 steps	Proceeds in a single step		
		An intermediate (carbocation) is formed	No intermediate is formed		
		Order and molecularity are 1	Order and molecularity are 2		
		For optically active compounds, the	For optically active compounds, the	3	3
		reaction proceeds through	reaction proceeds through inversion of		
		racemization.	configuration.		
		The order of reactivity of alkyl halide is	The order of reactivity of alkyl halide is		
		$3^0 > 2^0 > 1^0$	$1^0 > 2^0 > 3^0$		
		[Any 3 differences required]			
	(1)	Answer any 4 questions from 26	· · ·		
26.	(i)	The properties which depend only on the n	number of solute particles and not on their	1	
		nature are called colligative properties.			
		E.g.: Relative lowering of Vapour pressure,		1	4
	(::)	freezing point, Osmotic pressure. [Any 2 required] Here w ₂ = 1.26 g, R = 0.083 Lbar/K/mol, π = 2.57 x 10 ⁻³ bar, T = 300K & V= 200 cm ³ = 0.2 L			4
	(ii)				
		We Know that, Molar mass of solute, $M_2 = \frac{w_2RT}{\pi V} = \frac{1.26 \times 0.083 \times 300}{2.57 \times 10^{-3} \times 0.2} = 61038.9 \text{ g/mol}$			
27.	(i)				
27.	(1)	Anode reaction: $2H_2 + 4OH^- \rightarrow 4H_2O + 4e^-$		1 1	
		Cathode reaction: $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$ Overall reaction: $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$		1	
	(ii)	The advantages of fuel cell are:			
	(")	i) The cell works continuously as long as the reactants are supplied.			4
		ii) It has higher efficiency as compared to other conventional cells. 1			
		iii) It is eco-friendly since water is the only product formed.			
		iv) Water obtained from $H_2 - O_2$ fuel cell can be used for drinking perpose.			
		[Any 2 required]			
28.	(i)			1	
	(1)			-	4
28.	(i)	Arrhenius equation, k = A.e ^{-Ea/RT} We know that, $log k_2 = Ea [T_2 - T_1] k_1 = 2.303 R [T_1 - T_1]$		1 1	4

		Here $T_1 = 500 \text{ K}$, $k_1 = 0.02 \text{ s}^{-1}$, $T_2 = 700 \text{ K}$, $k_2 = 0.07 \text{ s}^{-1}$ and $R = 8.314 \text{ J} \text{ K}^{-1} \text{ mol}^{-1}$ $\log (0.07) = Ea [700 - 500] = 500 \text{ x} 700$ Ea = $0.5441 \text{ x} 2.303 \text{ x} 8.314 \text{ x} 500 \text{ x} 700 = 18231 \text{ J} \text{ mol}^{-1} = 18.231 \text{ kJ mol}^{-1}$ 200	2	
29.		 The different types of structural isomerism shown by co-ordination compounds are: Ionisation isomerism: Arising due to the exchange of ligands between the inside and outside of co-ordination sphere. E.g. [Co(NH₃)₅SO₄]Br and [Co(NH₃)₅Br]SO₄ Linkage isomerism: Arising due to the presence of ambidentate ligands, which can bind to the central atom through different donor atoms. E.g.: [Co(NH₃)₅(NO₂)]Cl₂ and [Co(NH₃)₅(ONO)]Cl₂ Solvate or hydrate isomerism: Arising due to the difference in the number of solvent molecules (water molecules) attached to the central atom as ligand. E.g.: [Cr(H₂O)₆]Cl₃ and [Cr(H₂O)₅Cl]Cl₂.H₂O Co-ordination isomerism: Arising due to the exchange of ligands between the cationic and anionic parts of the complex. E.g.: [Co(NH₃)₆][Cr(CN)₆] and [Cr(NH₃)₆][Co(CN)₆] 	4 x 1	4
30.	(i) (ii)	CH ₃ -CH ₂ -Cl [Chloroethane or Ethyl chloride] CH ₃ -CH ₂ -CH ₂ -Br [1-Bromopropane or n-Propyl bromide]	1 2	4
	(iii)	CH ₃ -CH ₂ -CH ₂ -I [1-Iodopropane or n-Propyl iodide]	1	

##