FIRST YEAR HIGHER SECONDARY 2nd TERMINAL EXAMINATION DEC 2022

CHEMISTRY - ANSWER KEY (Question Code: FY 1025)

Qn.	Sub	Answer Key/Value Points	Score	Total
No.	Qns.	Answer any 4 questions from 1 to 5. Each carries 1 score. (4 x 1 = 4)		
1.			1	1
2.		c) 45	1	1
3.		d) Chalcogens	1	1
4.		sp ³	1	1
5.		a) Work	1	1
	I	Answer any 8 questions from 6 to 15. Each carries 2 scores. (8 x 2 = 16)		
6.		Antoin Lavoisier	1	
		The law of conservation of mass states that matter can neither be created, nor be		
		destroyed.	1	2
		OR , In a chemical reaction, the total mass of the reactants = the total mass of the		
		products.		
7.	(i)	Molarity is the no. of moles of solute present per litre of the solution.	1	
		OR , Molarity (M) = No. of moles of solute	1	
		Volume of solution in litre		2
	(ii)	Molality is the no. of moles of solute present per kilogram of the solvent.	1	Z
		OR , Molality (M) = No. of moles of solute	1	
		Mass of solvent in kilogram		
8.		Drawback's of Bohr model of atom are:		
		 It could not explain the fine spectrum of hydrogen atom. 		
		2. It could not explain the spectrum of atoms other than hydrogen.		
		It could not explain Stark effect and Zeeman effect.	2x1	2
		4. It could not explain the ability of atoms to form molecules by chemical bonds.		
		5. It did not consider the wave character of matter and Heisenberg's uncertainty		
		principle. [Any 2 Required]		
9.		Energy of electron in the n th orbit $(E_n) = -R_H (Z^2/n^2)$	1	
		For the first orbit of He ⁺ , Z = 2 and n = 1. Also $R_H = 2.18 \times 10^{-18} J$		2
		So, $E_1 = -2.18 \times 10^{-18} \times (2^2/1^2) J = -8.72 \times 10^{-18} J$	1	
10.	(i)	Mendeleev's periodic law states that the properties of elements are the periodic	1	
		functions of their atomic weights.	1	2
	(ii)	18 groups and 7 periods		
11.		Down a group, ionization enthalpy decreases.	1	2
		Along a period, ionization enthalpy increases from left to right.	1	_
12.		Water molecule contains 4 Valence shell electron pairs – 2 bond pairs and 2 lone		
		pairs. Hence the expected shape of the molecule is tetrahedral. But due to the		2
		greater repulsion between lone pairs, the shape is distorted to bent or angular	2	-
		structure or inverted 'v' shape and the bond angle is 104.5°.		

				Н	∕ _H								
13.		No.					1						
		In PCl ₅ , there are 2 types of P-Cl bonds – axial bonds and equatorial bonds. The axial bond pairs are more repelled by the equatorial bond pairs. So the axial bond length is						2					
				belled by the e brial bond leng		airs. So the axia	al bond length is	1	1				
14.			-			natter present	in a system.	1					
		These are properties which depend on the amount of matter present in a system.1OR, these are properties which change when a system is further divided.							2				
		E.g.: Mass,	area, volume	e, length, heat	t capacity, internal	l energy, entha	lpy, entropy,		2				
				one example	is required]			1					
15.			ation is: $\Delta G =$					1	2				
				energy chang olute tempera	e, ΔH is the enthal	lpy change, ΔS	is the entropy	1	2				
				•	6 to 25. Each carri	ies 3 scores	(8 x 3 = 24)	L T					
16	(i)	(a) 2					(0 × 0 - 2+)	1/2					
	()	(b) 3						1/2					
	(ii)	Mixtures ha	aving same c	omposition th	roughout are calle	ed homogened	ous mixtures.						
			•	ompletely mix	with each other.								
		E.g. Air, all						2	3				
		Mixtures having different compositions at different parts are called heterogenous											
		mixtures. Here the components do not completely mix with each other.											
		E.g. Muddy water, sea water etc. [Any one difference or example is required]											
17.		Element	Percentage	Atomic mass	Percentage/Atom	Simple ratio	Simplest whole						
					ic mass		no. ratio						
		С	24.27	12	24.27/12 = 2.02	2.02/2.02 = 1	1	1					
		Н	4.07	1	4.07/1 = 4.07	4.07/2.02 = 2	2						
		Cl	71.65	35.5	71.65/35.5 = 2.02	2.02/2.02 = 1	1						
								1	3				
			irical Formula	-	E 40 E								
			rmula Mass (E (MM) = 98.96	EFM) = 12+2+35	.5 = 49.5								
			(WIWI) = 98.96 MM/EFM = 98.					1					
				rical formula x ı	n								
		interceutar j		$CI) \times 2 = C_2 H_4 CI_2$									
18.													
		1. Most of the α - particles passed through the gold foil without any deviation.											
		2. A small fraction of the α -particles was deflected by small angles.					24	n					
		3. A very few α – particles (~1 in 20,000) bounced back, that is, were deflected by					3 x 1	3					
		, nearly 180	-	. ,		. ,	,						

19.	(i)	2px Orbital	1	3
	(ii)	There are 3 unpaired electrons in Nitrogen atom.	1	
		The rule behind this is Hund's rule of Maximum multiplicity.	1	
20.	(i)	It is the heat change (enthalpy change) when an electron is added to the outer most shell of an isolated gaseous atom.	1	
	(ii)	This is because, when an electron is added to F, it enters into the smaller 2 nd shell. Due to the smaller size, the electron suffers more repulsion from the other electrons. But for Cl, the incoming electron goes to the larger 3 rd shell. So the electronic repulsion is low and hence Cl adds electron more easily than F.	2	3
21.	(i)	The similarities in properties shown by the diagonally placed elements of the 2 nd and	1	
	(ii)	3 rd periods in the Modern periodic table are called Diagonal relationship. The anomalous properties are due to their small size, large charge to radius ratio, high electronegativity and absence of vacant d orbitals.	2	3
22.		 The important postulates of VSEPR theory are: The shape of a molecule depends on the number of valence shell electron pairs around the central atom. The valence shell electron pairs repel each other. To reduce the repulsion, the electron pairs stay at maximum distance. Presence of lone pairs of electron causes distortion in the expected geometry of the molecule. The repulsion between two lone pairs of electrons is different from those between two bond pairs or between a lone pair and bond pair. The repulsion decreases in the order lone pair - lone pair repulsion > lone pair – bond pair repulsion. As the angle between the electron pairs increases, the repulsion decreases. 	3	3
23.	(i) (ii)	Lattice enthalpy is the energy required to completely separate one mole of an ionic compound into corresponding gaseous ions. OR , it is the energy liberated when one mole of an ionic compound is formed from corresponding gaseous ions. This is because in NH ₃ , the orbital dipole due to lone pair is in the same direction as the resultant dipole moment of the three N – H bonds. But in NF ₃ , the orbital dipole is in the opposite direction to the resultant dipole moment of the three N-F bonds.	1	3
		So the dipole moments get partially cancelled. OR,	2	

+1 CHEMISTRY ANSWER KEY – PREPARED BY ANIL KUMAR K L, APHSS ADICHANALLOOR, KOLLAM

24	(:)	It is defined as the half of the difference between the number of hereding above to the			
24.	(i)	It is defined as the half of the difference between the number of bonding electrons $(N_{\rm e})$ and the number of anti-bonding electrons $(N_{\rm e})$ in a molecule			
		(N_b) and the number of anti-bonding electrons (N_a) in a molecule.			
		OR, Bond order (B.O) = $\frac{1}{2} [N_b - N_a]$ OR, It is the number of bonds between 2 atoms in a molecule.			
	(ii)	As the bond order increases, bond length decreases.			
	(iii)	M.O configuration of F_2 is: $\sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2 \sigma 2pz^2 \pi 2px^2 \pi 2py^2 \pi^* 2px^2 \pi^* 2py^2$.	1		
	(111)	Bond order (B.O) = $\frac{1}{2} [N_b - N_a] = \frac{1}{2} [10 - 8] = \frac{1}{2} x 2 = 1$	1		
25.	(i)	It states that the total enthalpy change for a process is the same whether the	-		
25.	(1)	reaction is taking place in a single step or in several steps.	1		
		OR, the total enthalpy change for a process is independent of the path followed.	-		
	(ii)	The chemical equation is:			
	()	$CaCO_3 (s) \longrightarrow CaO (s) + CO_2 (g)$			
		Given $\Delta_f H^0$ CaCO ₃ (s) = -1206.92 kJ/mol, $\Delta_f H^0$ CaO (s) = -635.09 kJ/mol and $\Delta_f H^0$ CO ₂ (g)		3	
				•	
		= -393.51 kJ/mol			
		Enthalpy of reaction ($\Delta_r H^0$) = $\sum \Delta_f H^0_{(P)} - \sum \Delta_f H^0_{(R)}$	2		
		$= [\Delta_{f}H^{0}(CaO) + \Delta_{f}H^{0}(CO_{2})] - [\Delta_{f}H^{0}(CaCO_{3})]$			
		= [-635.09 + -393.51] – [-1206.92] = <u>178.32 kJ/mol</u>			
		Answer any 4 questions from 26 to 30. Each carries 4 scores. (4 x 4 = 16)			
26.	(i)	$N_2(g) + 3 H_2(g) \longrightarrow 2 NH_3(g)$			
		28g 6g 34g			
		According to the equation, 28 g N ₂ requires 6 g H ₂ for complete reaction.			
		So 2000 g N ₂ requires $6 \times 2000 = 428.57$ g H ₂	2		
		28		4	
		Here there is enough H ₂ (1000 g)			
		So, 2000 g N ₂ reacts with 428.57 g H ₂ to form 2428.57 g NH₃ (Or, 2.43 kg NH₃)			
	(ii)	Some H ₂ remains unreacted.	1		
_		Amount of unreacted $H_2 = 1000 - 428.57 = 571.43 g$	1		
27.	(i)	The Schrödinger equation. It is written as: $\hat{H}\psi = E\psi$	1		
	(ii)	Principal Quantum number (n), Azimuthal Quantum number (I), Magnetic Quantum	2	-	
	<i></i>	number (m or m_i) and Spin Quantum number (s or m_s).		4	
	(iii)	(a) 2p	1/2		
	(1)	(b) 5f $(2^{-1})^{-1}$	1/2		
28.	(i)	M.O configuration of O_2 : $\sigma 1s^2 \sigma 1s^2 \sigma 2s^2 \sigma 2s^2 \sigma 2p_z^2 \pi 2p_x^2 \pi 2p_y^2 \pi 2p_x^1 \pi 2p_y^1$	2		
	(::)				
	(ii)				
		2 p 2 p 2 p		л	
			r	4	
		σ 2pz	2		
		σ 2s			
		Atomic Molecular Atomic orbitals orbitals orbitals of O of O_ of O_			
	I				

+1 CHEMISTRY ANSWER KEY – PREPARED BY ANIL KUMAR K L, APHSS ADICHANALLOOR, KOLLAM

29.	(i) (ii)	 24Cr: [Ar] 3d⁵4s¹ OR, 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵ 4s¹ OR, 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹ 3d⁵ 29Cu: [Ar] 3d¹⁰4s¹ OR, 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s¹ OR, 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹ 3d¹⁰ <i>a)</i> Aufbau principle: It states that the orbitals are filled in the increasing order of their energies. OR, the orbitals are filled in the increasing order of their (n+l) value. 	1 1 1	4
		b) Pauli's Exclusion Principle: It states that no two electrons in an atom can have the same set of four quantum numbers . OR , an orbital can accommodate a maximum of only 2 electrons with opposite spin.	1	
30.	(i)	These are elements which contain partially filled d-orbitals in their ground state or in any one of their common oxidation states. OR, d block elements are called transition elements. They include elements from groups 3 to 12.	1	
	(ii) (iii)	(n-1)d ¹⁻¹⁰ ns ⁰⁻² Some of the properties of transition elements are: a) They are all metals.	1	4
		 b) They form coloured compounds or ions in aqueous solution. c) They show variable oxidation states and valencies. d) They are generally paramagnetic. e) They show catalytic properties. <i>[Any 2 required]</i> 	2	