	(1)	
	Marking Scheme (2023-24)	
	Class-X	
	Science (Subject Code – 086) b	
Q. No.	Answer	Marks
	Section–A	
1	b) Barium sulphate	1
2	b) Colourless	1
3	d) NaHCO ₃	1
4	a) Sodium	1
5	b) $2 \operatorname{Na}^{+} \left[\begin{array}{c} x \times x \\ x \times 0 \\ x \\$	1
6	d) 11 (2,8,1)	1
7	c) 14	1
8	b) Mushroom	1
9	a) tongue	1
10	c) Vegetative propagation	1
11	c) Growth hormones under the influence of the enzymes coded by a gene.	1
12	c) lack of oxygen and formation of lactic acid.	1
13	d) behind the mirror and its position varies according to the object distance.	1
14	c) scattering of light.	1
15	c) CFCs, Ozone	1
16	a) Broken down by biological processes	1
17	d) Assertion is false but Reason is true	1
18	a) Both A and R are true and R is the correct explanation of A.	1
19	d) Assertion is false but Reason is true	1
20	c) A is true but R is false.	1
01	Section—B	2
21	Response with any of the given two arguments. [1+1]	2
	• Bubbles of gas/ Evolution of gas	
	• Change in colour (Zn - silvery grey to black)	
	Change in temperature	
22		2
22	• After fertilisation, the zygote divides several times to form an embryo within the	2
	ovule.	
	 The ovule develops a tough coat and is gradually converted into a seed. The overv graduation of ringing to form a finit. 	
	 The ovary grows rapidly and ripens to form a fruit. The notate groups at the and stigme may shrivel and fall off [0.5x4-2] 	
23	• The petals, sepals, stamens, style and stigma may shrivel and fall off. [0.5x4=2] To filter out nitrogenous waste products like urea and uric acid [0.5] from the	2
23	blood [0.5] in humans.	2
	Organ for storage: Urinary Bladder [0.5]	
	Organ for release: Urethra [0.5]	
	OR	
	The blood emerges from the heart under high pressure and flows through arteries.	
	Hence, to bear this pressure the arteries have thick and elastic walls. [1]	
	-Veins have values to ensure that the blood flows in one direction only. [1]	
24	a) When light travels from an optically rarer medium to an optically denser medium it	2
	moves towards the normal. Since $n_B > n_A$ hence the light ray will bend towards the	
	normal on passing from medium A to B. [0.5+0.5]	
	1	

b) The speed of the light will increase when the light travels from B to C. Since $ne < n_n and v = (c/n)$, the speed of light ray will increase in the second medium. $(0.5+0.5)$ 25 Resistance of each part is $\frac{8}{9} \Omega$ (as resistance is proportional to the length of the wire.) 2 $\frac{1}{n_t} = \frac{2}{n} + \frac{2}{n} = \frac{2}{n}$ [11] $\therefore R_f = \frac{2}{n} \cdot \frac{2n}{n} = \frac{2}{n}$ [0.5] The magnetic field strength is more in the region where the field lines are crowded. This means the field strength is maximum near the poles and it reduces as we go away from the poles. [0.5+0.5] The direction of the magnetic field is also reversed. [11] 26 a) 100001 because only 10 % of energy is available for the next trophic level. 2 b) No, since the loss of energy at each step is so great that very little usable energy will remain after 4 trophic levels. [0.5+0.5] The direction of the magnetic field is also reversed. [11] 27 a) The above reaction. Section—C 27 a) The above reaction is known as a thermite reaction as the reaction is highly exothermic reaction. OR the metal (Mn/Fe) obtained will be in moltent/ liquid state. [11] b) Substance oxidised - $\Lambda(s)$ [0.5] Substance oxidised - $\Lambda(s)$ [0.5] (c) Aluminium is preferably used in thermite reactions as it is placed above Fe and Mn in reactivity series of metals. OR Al is more reactive than Fe/Mn 28 MCl:; Ms(SO ₄); [11] M in general forms lonic bond. It can acquire a stable electronic configuration of neon (2, 8) by losing its three valence electrons to form M ³⁺ cation. [11] Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to M ⁴ (11) b) Diagram to represent the process of refining of 'X [2] $\frac{Key}{V' - Copper'Cu and 'Y' - CuO$ [11] b) Diagram to represent the process of refining of 'X [2] $\frac{Key}{V' - Cupper'Cu and 'Y' - CuO}$ [3] $\frac{29}{V' - Copper'Cu and 'Y' - CuO}$ [4] $\frac{29}{V' - Copper'Cu and 'Y' - CuO}$ [4] $\frac{29}{V' - Cupper'Cu and 'Y' - CuO}$ [4] $\frac{29}{V' - Cupper'Cu and 'Y' - CuO}$ [4] 	h			
25 Resistance of each part is $\frac{k}{2} \Omega$ (as resistance is proportional to the length of the wire.) 2 $\frac{1}{n_1} = \frac{3}{n} + \frac{3}{n} + \frac{3}{n} = \frac{9}{n}$ [0.5] $\frac{1}{n_1} = \frac{3}{n} + \frac{3}{n} + \frac{3}{n} = \frac{9}{n}$ [11] $\therefore R_1 = \frac{k}{9} \therefore \frac{k_1}{n} = \frac{4}{9}$ [0.5] OR The magnetic field strength is more in the region where the field lines are crowded. This means the field strength is maximum near the poles and it reduces as we go away from the poles. 26 a) 100000 because only 10 % of energy is available for the next trophic level. 2 b) No, since the loss of energy at each step is so great that very little usable energy will remain after 4 trophic levels. 2 OR Section-C 27 a) The above reaction is known as a thermite reaction as the reaction is highly exothermic reaction. 3 OR the metal (Mn/He) obtained will be in molten/ liquid state. [1] b) Substance oxidised - Al(5) [0.5] Substance coluced - MnO ₂ (s) [0.5] OR All is more reactive than Fe/ Mn OR Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast				
25 Resistance of each part is $\frac{k}{2} \Omega$ (as resistance is proportional to the length of the wire.) 2 $\frac{1}{n_1} = \frac{3}{n} + \frac{3}{n} + \frac{3}{n} = \frac{9}{n}$ [0.5] $\frac{1}{n_1} = \frac{3}{n} + \frac{3}{n} + \frac{3}{n} = \frac{9}{n}$ [11] $\therefore R_1 = \frac{k}{9} \therefore \frac{k_1}{n} = \frac{4}{9}$ [0.5] OR The magnetic field strength is more in the region where the field lines are crowded. This means the field strength is maximum near the poles and it reduces as we go away from the poles. 26 a) 100000 because only 10 % of energy is available for the next trophic level. 2 b) No, since the loss of energy at each step is so great that very little usable energy will remain after 4 trophic levels. 2 OR Section-C 27 a) The above reaction is known as a thermite reaction as the reaction is highly exothermic reaction. 3 OR the metal (Mn/He) obtained will be in molten/ liquid state. [1] b) Substance oxidised - Al(5) [0.5] Substance coluced - MnO ₂ (s) [0.5] OR All is more reactive than Fe/ Mn OR Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast		[0.5+0.5]		
$ \begin{array}{c c} & (0.5) \\ \hline 1_{R_1} = \frac{3}{R} + \frac{3}{R} = \frac{9}{R} \\ (1) \\ \therefore R_1 = \frac{8}{9} \cdot \frac{2}{R} = \frac{9}{9} \\ (0.5) \\ \hline \\ $	25		2	
$\frac{1}{n_1} = \frac{3}{n} + \frac{3}{n} + \frac{3}{n} = \frac{9}{n}$ [1] $\therefore R_T = \frac{9}{n} \cdot \frac{n_t}{n} = \frac{1}{9}$ [0.5] OR The magnetic field strength is more in the region where the field lines are crowded. This means the field strength is maximum near the poles and it reduces as we go away from the poles. [0.5+0.5] [0.5+0.5] The direction of the magnetic field is also reversed. [11] 26 a) 100000 because only 10 % of energy is available for the next trophic level. 2 b) No, since the loss of energy at each step is so great that very little usable energy will remain after 4 trophic levels. 2 OR OR 11 26 No, since the loss of energy at each step is so great that very little usable energy will remain after 4 trophic levels. OR 11 27 a) The above reaction is known as a thermite reaction as the reaction is highly exothermic reaction. OR 11 OR 11 OR 10 OR		•		
$\therefore R_1 = \frac{8}{9}$ [0.5] OR The magnetic field strength is more in the region where the field lines are crowded. This means the field strength is maximum near the poles and it reduces as we go away from the poles. [0.5+0.5] The direction of the magnetic field is also reversed. [1] 26 a) 100001 because only 10 % of energy is available for the next trophic level. 2 b) No, since the loss of energy at each step is so great that very little usable energy will remain after 4 trophic levels. 2 Section—C 27 a) The above reaction is known as a thermite reaction as the reaction is highly exothermic reaction. 0R MR b Section—C 27 a) The above reaction is known as a thermite reaction as the reaction is highly exothermic reaction. 3 B Common the molen/ liquid state. [1] b) Substance oxidised - Al(s) [0.5] [0.5] Substance reduced - MnO ₂ (s) [0.5] Control [1] Aluminium is preferably used in thermite reactions as it is placed above Fe and Mn in reactivity series of metals. III Compounds forms lonic bond. It can acquire a stable electronic configuration of neon (2, 8) by losing				
OR The magnetic field strength is maximum near the poles and it reduces as we go away from the poles. [0.5+0.5] The direction of the magnetic field is also reversed. [11] 26 a) 100001 because only 10 % of energy is available for the next trophic level. 2 b) No, since the loss of energy at each step is so great that very little usable energy will remain after 4 trophic levels. 2 Section—C 27 a) The above reaction is known as a thermite reaction as the reaction is highly swill remain after 4 trophic levels. 3 OR OR the metal (Mn/Fe) obtained will be in molten/ liquid state. [1] b) Substance reduced – MnO ₂ (s) [0.5] Substance reduced – MnO ₂ (s) In reactive than Fe/ Mn OR All is more reactive than Fe/ Mn Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' OR Alis more reactive than Fe/ Mn Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' OR (II)		$\frac{1}{R_1} = \frac{1}{R} + \frac{1}{R} + \frac{1}{R} = \frac{1}{R} $		
OR The magnetic field strength is maximum near the poles and it reduces as we go away from the poles. [0.5+0.5] The direction of the magnetic field is also reversed. [11] 26 a) 100001 because only 10 % of energy is available for the next trophic level. 2 b) No, since the loss of energy at each step is so great that very little usable energy will remain after 4 trophic levels. 2 Section—C 27 a) The above reaction is known as a thermite reaction as the reaction is highly swill remain after 4 trophic levels. 3 OR OR the metal (Mn/Fe) obtained will be in molten/ liquid state. [1] b) Substance reduced – MnO ₂ (s) [0.5] Substance reduced – MnO ₂ (s) In reactive than Fe/ Mn OR All is more reactive than Fe/ Mn Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' OR Alis more reactive than Fe/ Mn Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' OR (II)		$R_{4} = \frac{R}{2} \cdot \frac{R_{1}}{R_{1}} = \frac{1}{2}$ [0.5]		
The magnetic field strength is more in the region where the field lines are crowded. This means the field strength is maximum near the poles and it reduces as we go away from the poles. [0.5+0.5] The direction of the magnetic field is also reversed. [1] 26 a) 100001 because only 10 % of energy is available for the next trophic level. 2 b) No, since the loss of energy at each step is so great that very little usable energy will remain after 4 trophic levels. 2 OR 27 a) The above reaction is known as a <i>thermite reaction</i> as the reaction is highly exothermic reaction. OR the metal (Mn/Fe) obtained will be in molten/ liquid state. colspan="2">[1] 0 A The directive than Fe/ Mn Componds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] OR All is more reactive than Fe/ Mn [1] 28 MCIs: Mc(SQ.); [1] Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] Compoun				
This means the field strength is maximum near the poles and it reduces as we go away from the poles. [0.5+0.5] The direction of the magnetic field is also reversed. [1] 26 a) 100001 because only 10 % of energy is available for the next trophic level. 2 b) No, since the loss of energy at each step is so great that very little usable energy will remain after 4 trophic levels. 2 OR OR 10 OR 11 OR 11 OR 11 0 OR 0 Notation of the magnetic field is also reversed. 11 2 0 0 2 Notation of the magnetic field is also reversed. 10 0 0 2 0 0 0 0 0		-		
from the poles. [0.5+0.5] The direction of the magnetic field is also reversed. [1] 26 a) 10000J because only 10 % of energy is available for the next trophic level. 2 b) No, since the loss of energy at each step is so great that very little usable energy will remain after 4 trophic levels. 2 Section-C 27 a) The above reaction is known as a thermite reaction as the reaction is highly exothermic reaction. 3 OR the metal (Mn/Fe) obtained will be in molten/ liquid state. [1] b) Substance oxidised - Al(s) [0.5] Substance reduced - MnO ₂ (s) [0.5] C A luminium is preferably used in thermite reactions as it is placed above Fe and Mn in reactivity series of metals. [1] OR A luminium is preferably used in thermite reactions configuration of neon [2, 8) by losing its three valence electrons to form M ³¹ cation. [1] 28 MCl ₃ : M ₂ (SO ₄) ₃ M M line great forms lonic bond. It can acquire a stable electronic configuration of neon [2, 8) by losing its three valence electricity in liquid / molten state but not in solid state in contrast to 'M' [1] </th <th></th> <th></th> <th></th>				
Image: Constraint of the magnetic field is also reversed. [1] 26 a) 100001 because only 10 % of energy is available for the next trophic level. 2 b) No, since the loss of energy at each step is so great that very little usable energy will remain after 4 trophic levels. 2 Section-C 27 a) The above reaction is known as a thermite reaction as the reaction is highly exothermic reaction. 3 OR 11 b) Substance oxidised - Al(s) [0.5] Substance oxidised - Al(s) [0.5] [0.5] Substance reduced - Mno ₂ (s) [0.5] [0.5] c) Aluminium is preferably used in thermite reactions as it is placed above Fe and Mn in reactivity series of metals. [1] Al is more reactive than Fe/Mn 11 3 28 MCl1; M2(SOa) ₃ [1] 3 M in general forms lonic bond. It can acquire a stable electronic configuration of neon (2, 8) by losing its three valence electrons to form M ³⁺ cation. [1] a) 'X' - Copper/ Cu and 'Y' - CuO [1] 3 b) Diagram to represent the process of refining of 'X [2] Viatore recepter Cathode Impurities (anode mud) 29 - Iodine is essential for the synthesis of thyroxin hormone.				
The direction of the magnetic field is also reversed. [1] 26 a) 100000 because only 10 % of energy is available for the next trophic level. 2 b) No, since the loss of energy at each step is so great that very little usable energy will remain after 4 trophic levels. 2 Section-C 27 a) The above reaction is known as a thermite reaction as the reaction is highly exothermic reaction. 3 OR the metal (Mn/Fe) obtained will be in molten/ liquid state. [1] b) Substance oxidised - Al(s) [0.5] Substance oxidised - Al(s) [0.5] Substance reduced - MnO ₂ (s) [0.5] C All is more reactive than Fe/ Mn All is more reactive than Fe/ Mn 28 MCl ₁ : M2(SO ₁): M in general forms lonic bond. It can acquire a stable electronic configuration of neon (2, 8) by losing its three valence electrons to form M ³⁺ cation. [1] Cathode electroicity in liquid / molten state but not in solid state in contrast to 'M' Impure copper/Cu and 'Y' - CuO (II) b) Diagram to represent the process of refining of 'X V <td co<="" th=""><th></th><th>-</th><th></th></td>	<th></th> <th>-</th> <th></th>		-	
26 a) 10000J because only 10 % of energy is available for the next trophic level. 2 b) No, since the loss of energy at each step is so great that very little usable energy will remain after 4 trophic levels. 2 Section—C 27 a) The above reaction is known as a thermite reaction as the reaction is highly exothermic reaction. 3 OR the metal (Mn/Fe) obtained will be in molten/ liquid state. [1] b) Substance oxidised - Al(s) [0.5] Substance reduced – MnO ₂ (s) [0.5] COR Aluminium is preferably used in thermite reactions as it is placed above Fe and Mn in reactivity series of metals. OR Alis more reactive than Fe/ Mn 28 MCl ₃ ; M ₂ (SO ₄) ₃ [1] OR Alis more reactive than Fe/ Mn 28 Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' OR Alis more reactive than Fe/ Mn 28 Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to '				
Section—C 27 a) The above reaction is known as a thermite reaction as the reaction is highly exothermic reaction. 3 OR the metal (Mn/Fe) obtained will be in molten/ liquid state. [1] b) Substance oxidised - Al(s) [0.5] Substance reduced – MnO ₂ (s) [0.5] c) Aluminium is preferably used in thermite reactions as it is placed above Fe and Mn in reactivity series of metals. [1] Al is more reactive than Fe/Mn [1] 28 MCl ₃ ; Mc(SO ₄) ₃ [1] Al is more reactive than Fe/Mn [1] Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] a) 'X' - Copper/Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Vere copper Very could be active to the synthesis of thyroxin hormone. 29 - Iodine is essential for the synthesis of thyroxin hormone. 3	26		2	
Section-C 27 a) The above reaction is known as a thermite reaction as the reaction is highly exothermic reaction. 3 OR the metal (Mn/Fe) obtained will be in molten/ liquid state. [1] b) Substance oxidised - Al(s) [0.5] Substance reduced - MnO2 (s) [0.5] c) Aluminium is preferably used in thermite reactions as it is placed above Fe and Mn in reactivity series of metals. [1] Al is more reactive than Fe/Mn [1] 28 MCl3; Mc(SO4)3 [1] M in general forms Ionic bond. It can acquire a stable electronic configuration of neon (2, 8) by losing its three valence electrons to form M ³ cation. [1] Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] a) 'X' - Copper/Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Verter copper		b) No, since the loss of energy at each step is so great that very little usable energy		
27 a) The above reaction is known as a thermite reaction as the reaction is highly exothermic reaction. 3 08 cathermic reaction. 08 the metal (Mn/Fe) obtained will be in molten/ liquid state. [1] b) Substance oxidised - Al(s) [0.5] Substance reduced - MnO ₂ (s) [0.5] c) Aluminium is preferably used in thermite reactions as it is placed above Fe and Mn in reactivity series of metals. [1] Al is more reactive than Fe/Mn 28 28 MCl ₃ ; M ₂ (SO ₄) ₃ [1] M in general forms lonic bond. It can acquire a stable electronic configuration of neon (2, 8) by losing its three valence electrons to form M ³⁺ cation. [1] Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] a) 'X' - Copper/ Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Verter copper Acidified copper sulphate solution. Pure copper Acidified copper sulphate solution. (and e mud) 29 - Iodine is essential for the synthesis of thyroxin hormone. 3		will remain after 4 trophic levels.		
exothermic reaction. OR the metal (Mn/Fe) obtained will be in molten/ liquid state. [1] b) Substance oxidised - Al(s) [0.5] Substance reduced – MnO ₂ (s) [0.5] c) Aluminium is preferably used in thermite reactions as it is placed above Fe and Mn in reactivity series of metals. [1] Al is more reactive than Fe/Mn [1] 28 MCl ₃ ; M ₂ (SO ₄) ₃ [1] M in general forms Ionic bond. It can acquire a stable electronic configuration of neon (2, 8) by losing its three valence electrons to form M ³⁺ cation. [1] Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] a) 'X' - Copper/Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Verter copper Cathode Fure copper Pure copper Cu [*] or Cu [*] or Cu [*] function [1] cathode Fure copper Subtime 3 29 - Iodine is essential for the synthesis of thyroxin hormone. 3 - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3		Section—C		
OR [1] b) Substance oxidised - Al(s) [0.5] Substance reduced - MnO ₂ (s) [0.5] c) Aluminium is preferably used in thermite reactions as it is placed above Fe and Mn in reactivity series of metals. [1] CR [1] Al is more reactive than Fe/Mn [1] 28 MCl ₃ ; M ₂ (SO ₄) ₃ [1] M in general forms Ionic bond. It can acquire a stable electronic configuration of neon (2, 8) by losing its three valence electrons to form M ³⁺ cation. [1] Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] OR [1] 3 a) 'X' - Copper/Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Cathode Fure copper Pure copper Cubode Cubode Tank Impurities (anode mud) 29 - Iodine is essential for the synthesis of thyroxin hormone. 3 Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3	27		3	
the metal (Mn/Fe) obtained will be in molten/ liquid state. [1] b) Substance oxidised - Al(s) [0.5] Substance reduced - MnO ₂ (s) [0.5] c) Aluminium is preferably used in thermite reactions as it is placed above Fe and Mn in reactivity series of metals. [1] Al is more reactive than Fe/ Mn [1] 28 MCl ₃ ; M ₂ (SO ₄) ₃ [1] Min general forms Ionic bond. It can acquire a stable electronic configuration of neon (2, 8) by losing its three valence electrons to form M ³⁺ cation. [1] Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] a) 'X' - Copper/ Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Very cathode Fure copper Pure copper Suphate solution Minpurities (anode mud) [3] 29 - Iodine is essential for the synthesis of thyroxin hormone. 3 - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3				
b) Substance oxidised - Al(s) [0.5] Substance reduced - MnO2 (s) [0.5] c) Aluminium is preferably used in thermite reactions as it is placed above Fe and Mn in reactivity series of metals. [1] Al is more reactive than Fe/ Mn [1] 3 28 MCl ₃ ; M ₂ (SO ₄) ₃ [1] 3 M in general forms lonic bond. It can acquire a stable electronic configuration of neon (2, 8) by losing its three valence electrons to form M ³⁺ cation. [1] Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] a) 'X' - Copper/ Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Very cathode Pure copper Cathode Impure copper Pure copper Cathode Furge copper Subplate solution 29 - Iodine is essential for the synthesis of thyroxin hormone. 3 - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3				
Substance reduced - MnO2 (s) [0.5] c) Aluminium is preferably used in thermite reactions as it is placed above Fe and Mn in reactivity series of metals. [1] Al is more reactive than Fe/Mn [1] 28 MCl ₃ ; M ₂ (SO ₄) ₃ [1] 3 M in general forms Ionic bond. It can acquire a stable electronic configuration of neon (2, 8) by losing its three valence electrons to form M ³⁺ cation. [1] Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] a) 'X' - Copper/Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Cathode Impure copper Acidified copper sulphate solution Pure copper Cathode Pure copper Tank Impurities (anode mud) 29 - Iodine is essential for the synthesis of thyroxin hormone. 3 - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3				
c) Aluminium is preferably used in thermite reactions as it is placed above Fe and Mn in reactivity series of metals. [1] OR [1] Al is more reactive than Fe/Mn [1] 28 MCl ₃ ; M ₂ (SO ₄) ₃ [1] M in general forms Ionic bond. It can acquire a stable electronic configuration of neon (2, 8) by losing its three valence electrons to form M ³⁺ cation. [1] Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] a) 'X' - Copper/Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Vertex cathode Fure copper Pure copper Acidified copper sulphate solution Cathode Tank Impurities (anode mud) 29 - Iodine is essential for the synthesis of thyroxin hormone. 3 - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3		, , , , , , , , , , , , , , , , , , , ,		
in reactivity series of metals. [1] OR [1] Al is more reactive than Fe/Mn [1] 28 MCl ₃ ; M ₂ (SO ₄) ₃ [1] M in general forms lonic bond. It can acquire a stable electronic configuration of neon (2, 8) by losing its three valence electrons to form M ³⁺ cation. [1] Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] a) 'X' - Copper/Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Cathode Fure copper Pure copper Impurities (anode mud) 29 - Iodine is essential for the synthesis of thyroxin hormone. 3 Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3				
OR Al is more reactive than Fe/Mn 28 MCl3; M2(SO4)3 [1] 3 M in general forms Ionic bond. It can acquire a stable electronic configuration of neon (2, 8) by losing its three valence electrons to form M ³⁺ cation. [1] 3 Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] 3 a) 'X' - Copper/ Cu and 'Y' - CuO [1] 0 [1] b) Diagram to represent the process of refining of 'X [2] [2] Vertex copper Cathode Impure copper Pure copper Acidified copper sulphate solution Impurities (anode mud) [3] 29 - Iodine is essential for the synthesis of thyroxin hormone. 3 - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3				
Al is more reactive than Fe/ Mn 28 MCl ₃ ; M ₂ (SO ₄) ₃ M in general forms Ionic bond. It can acquire a stable electronic configuration of neon (2, 8) by losing its three valence electrons to form M ³⁺ cation. [1] Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] a) 'X' - Copper/ Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Cathode Impure copper Acidified copper sulphate solution Pure copper Cathode Pure copper Impurities (anode mud) 3				
28 MCl ₃ ; M ₂ (SO ₄) ₃ [1] 3 M in general forms Ionic bond. It can acquire a stable electronic configuration of neon (2, 8) by losing its three valence electrons to form M ³⁺ cation. [1] Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] a) 'X' - Copper/ Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Cathode Impure copper Vertex copper Suphate solution (anode mud) 29 - Iodine is essential for the synthesis of thyroxin hormone. 3 - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3				
(2, 8) by losing its three valence electrons to form M ³⁺ cation. [1] Compounds formed will conduct electricity in liquid / molten state but not in solid state in contrast to 'M' [1] a) 'X' - Copper/Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Impure copper Cathode Pure copper Cathode Pure copper Sulphate solution Canode mud) Tank Impurities (anode mud) 29 - Iodine is essential for the synthesis of thyroxin hormone. 3	28		3	
29 - Iodine is essential for the synthesis of thyroxin hormone. 3		M in general forms Ionic bond. It can acquire a stable electronic configuration of neon		
contrast to 'M' [1] a) 'X' - Copper/Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Image: Cathode Pure copper - Cut and Pure copper - Acidified copper subpate solution Image: Cut and Pure copper - Cut and Pure coppe		$(2, 8)$ by losing its three valence electrons to form M^{3+} cation. [1]		
contrast to 'M' [1] a) 'X' - Copper/Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Image: Cathode Pure copper - Cut and Pure copper - Acidified copper subpate solution Image: Cut and Pure copper - Cut and Pure coppe				
OR a) 'X' - Copper/Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Key Cathode Pure copper Anode Pure copper Acidified copper sulphate solution Tank Impurities (anode mud) 29 - Iodine is essential for the synthesis of thyroxin hormone. 3 - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3				
a) 'X' - Copper/Cu and 'Y' - CuO [1] b) Diagram to represent the process of refining of 'X [2] Image: second se				
b) Diagram to represent the process of refining of 'X [2] Cathode Pure copper Pure copper Cathode Pure copper Cathode Cathode Pure copper Cathode Cathode Cathode Cathode Cathode Cathode Pure copper Cathode Cathode Cathode Cathode Pure copper Cathode Cath				
29 - Iodine is essential for the synthesis of thyroxin hormone. 3				
29 - Iodine is essential for the synthesis of thyroxin hormone. 3 - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3				
Pure copper Impure copper Acidified copper sulphate solution Tank Impurities (anode mud) 3 29 - Iodine is essential for the synthesis of thyroxin hormone. - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3		cil de la cilitation de		
Pure copper Impure copper Acidified copper sulphate solution Tank Impurities (anode mud) 3 29 - Iodine is essential for the synthesis of thyroxin hormone. - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3		CathodeAnode		
29 - Iodine is essential for the synthesis of thyroxin hormone. 3 - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3				
29 - Iodine is essential for the synthesis of thyroxin hormone. 3 - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3				
29 - Iodine is essential for the synthesis of thyroxin hormone. 3 - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3		sulphate solution		
29 - Iodine is essential for the synthesis of thyroxin hormone. 3 - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3		Cu ²		
29 - Iodine is essential for the synthesis of thyroxin hormone. 3 - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3				
29 - Iodine is essential for the synthesis of thyroxin hormone. 3 - Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 3				
 Thyroxin regulates carbohydrate, protein and fat metabolism in the body. 				
- Thyroxin regulates carbohydrate, protein and fat metabolism in the body.	29	- Iodine is essential for the synthesis of thyroxin hormone.	3	

30	There are 50% chances that a girl may be born and 50% chances that a boy may be born. [1] It can be explained as follows:	3
	Most human chromosomes have a maternal copy and a paternal copy. We have 22 such chromosomes. One pair of chromosomes called sex chromosomes is odd in not always being a perfect pair. Women have a perfect pair of sex chromosomes, both called X. (XX) [0.5]	
	But men have a mismatched pair of sex chromosomes in which one is normal sized – X chromosome while the other is a short one called Y chromosome. (XY) [0.5]	
	A child receives one chromosome from mother which is essentially X chromosome. [0.5]	
	A child who inherits an X chromosome from her father will be a girl, and one who inherits a Y chromosome from him will be a boy. [0.5]	
31	i. The refractive index of a medium with respect to air is given by $\frac{speed \ of \ light \ in \ air}{speed \ of \ light \ in \ the \ medium}$. Since speed of light in the medium is always less than the speed of light in air, hence the above ratio is always greater than 1. [0.5+0.5]	3
	 ii. The ray of light is undergoing normal incidence at the air-plastic block interface. And for normal incidence there is no deviation. [1] iii. [0.5+0.5] 	
	Puris Blues	
	(Credit arrows, refracted ray moving away from normal)	
32	i. Joules law of heating states that the heat dissipated across a resistor is directly proportional to [0.5 for naming only]	3
	(a) the square of the current flowing through it	
	(b) The resistance of the conductor(c) duration of flow of current. [1.5]	
	$H = 1^2 Rt \text{ (alternative answer).}$	
	 ii. Resistance of a conductor depends on (a) the length of the conductor (b) the area of the cross section (c) nature of material (d) temperature of the conductor. 	
	(Any two should fetch full marks). [0.5+0.5]	
33	 (i) Anannya's answer is wrong. Electrical appliances with metallic bodies need an earth wire which provides a low resistance conducting path to the flow of current, in case there is an accidental leakage of current through the conducting body of the appliances. [1+1] 	3
	 (ii) An electrical fuse is a safety device that operates to provide protection against the overflow of current in an electrical circuit. An important component of an electrical fuse is a metal wire or strip that melts when excess current flows through it. [1] 	
	3	

	Section–D	1
34 e	 Rehmat's observation is correct as the hydrogen atoms are substituted by hetero atom i.e., Cl 	5
	$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl (in the presence of sunlight)$	
	OR	
	Any other relevant equation in the chain reaction	
	$2\text{NaCl(aq)} + 2\text{H}_2\text{O(l)} \rightarrow 2\text{NaOH(aq)} + \text{Cl}_2(g) + \text{H}_2(g)$	
	OR	
	$NaCl \rightarrow Na^+ + Cl^-$	
	$2\text{Cl}^{-} \rightarrow \text{Cl}_2 + 2e^{-}(\text{At anode})$	
	$H_2O \rightarrow H^+ + OH^-$	
	$2H^+ + 2e \rightarrow H_2$ (At cathode)	
	$Na^+ + OH^- \rightarrow NaOH$ [2]	
1		
t	b) Sodium hydroxide/ NaOH/ Caustic soda [1] Useducerer 10	
	Hydrogen - ½ Uses: (any one each) [1]	
	Uses: (any one each) [1] Sodium hydroxide/ NaOH/ Caustic soda	
	- Degreasing of metals	
	 Preparation of soaps and detergents 	
	- Paper making	
	- Artificial fibres	
	Hydrogen -	
	- Fuels	
	- Margarine	
	- Manufacture of ammonia for fertilizers	
	OR	
	X - Ethanoic acid/ acetic acid/ CH ₃ COOH	
	Y - Ethanol/ Ethyl alcohol/ C2H5OH	
	Z - Ethyl ethanoate/ Ester – $CH_3COOC_2H_5$	
	[1 x 3]	
	$CH_3 = COOH + CH_3 = CH_2OH = \frac{Add}{CH_3} + CH_3 = CH_2 - CH_2 - CH_3$	
	(Ethanoic acid) (Ethanol) (Ester)	
	[1]	
	[-]	
	$CH_{3}COOC_{2}H_{5} \xrightarrow{NaOH} C_{2}H_{5}OH+CH_{3}COONa$ [1]	
	$CI_3COOC_2II_5 \qquad C_2II_5OII+CII_3COONa \qquad [1]$	
35		5
55 8	 Sperm formation will be adversely affected because it requires a lower temperature than the body temperature. 	5
ł	 b) Vas deferens is a passage for transfer of sperms, so sperms will not be transferred further. 	
c) When prostate and seminal vesicles are not functional, they will not add secretions	
	for nourishment and medium for the transport of sperms.	
0	1) When an egg is not fertilised in a human female, it lives for about one day. Then, the thickened lining of the uterus breaks leading to discharge of blood and mucus	
I	the unexcited mining of the there's ofeaks reading to discharge of blood and indeus	I

Section–E			
37	a) A - Ethanol; F - Ethene	2] 4	
	$CH_{3} \xrightarrow{-CH_{2}OH} \xrightarrow{Alkaline KMnO_{4} + Heat} CH_{3}COONa \xrightarrow{H^{+}} CH_{3}COOH CH_{3}$	2]	
	b) $CH_3 - CH_2OH \xrightarrow{Hot conc.} H_2SO_4 \rightarrow CH_2 = CH_2 + H_2O$ <u>A</u> <u>F</u>		
	OR		
	Oxidation, Addition/ Hydrogenation		
	Propanol, Propene		
38	a) Free ear lobe is dominant because it is found in a large majority of the population. (1)b) No. It is not sex linked. As per the data of the family as well as the class, it is indicat that free ear lobe is present in males as well as in females. (1)	ed 4	
	c) Father – Ff (free ear lobe), Mother – Ff (free ear lobe), Rahul – ff (attached ear lobe) a Nisha – Ff (free ear lobe) (1/2 x 4 = 2)	nd	
	OR		
	Suresh's father – ff (attached ear lobe), mother – ff (attached ear lobe), Suresh - (attached ear lobe), Siya – ff (attached ear lobe). If both parents have recessive charact then all the children can have recessive character only.		
39	(i) 12Ω lamps (only) on.	4	
	(a) 4Ω lamps (only) on [0.5+0.1]	5]	
	(ii) 12 V for both sets of lamps and all of them are in parallel.	1]	
	(iii) 12 Ω lamps are on when the wire is connected to position 2.		
	Voltage across both 12 Ω lamps = 12 V.		
	V=IR (Ohm's law).		
	$I = \frac{V}{R} = \frac{12}{12} = 1A.$ [1]	.]	
	4 Ω lamps are on when the wire is connected to position 3.		
	Voltage across both 4 Ω lamps = 12 V.		
	V=IR (Ohm's law).		
	$I = \frac{V}{R} = \frac{12}{4} = 3A.$ [1]	.]	
	OR		
	$P = V^2 / R$		
	All lamps are in parallel and hence same V for all lamps. 12×12 2×12 2×12		
	For 4 Ω lamps $\rightarrow P = \frac{12 \times 12}{4} = 36 W$		
	For 12 Ω lamps $\rightarrow P = \frac{12 \times 12}{12} = 12 W$		
	Hence 4 Ω lamps will have higher power. [0.5 x	4]	
