A	•MATHEMATICS EM - ANSWER KEY	E-903
Qn no.	Key	Score

Each questions from 1 to 4 carries 2 scores. (Answer any 3)

1	a) $A F=\frac{12}{2}=6 \mathrm{~cm}$	1	
	b) $E F: B C=1: 2$	1	
2	a) $P Q=3 \times A B=15 \mathrm{~cm}$	1	
	b) $11: 33=1: 3$	1	2
3	a) $x^{2}+2$	1	2
	b) $p(1)=2+1=3$	1	
4	a) $B C=\sqrt{3^{2}-1^{2}}=\sqrt{8} \mathrm{~cm}$	1	2
	b) $4+\sqrt{8} \mathrm{~cm}$	1	

Each questions from 5 to 10 carries 3 scores. (Answer any 4)

5	a) $\angle A O C=60^{\circ}$ b) $O C=2 \mathrm{~cm}$ c) $A B=2 A C=4 \sqrt{3} \mathrm{~cm}$	1 1 1	3
6	Fr drawing a line of length 11 cm and divide it into 3 equal parts.	1	3
7	a) B b) Side of the regular hexagon $=2 \mathrm{~cm}$ Area $=6 \sqrt{3} \times \frac{2^{2}}{4}=6 \sqrt{3} \mathrm{sq.cm}$	1 1 1	3

\begin{tabular}{|c|c|c|c|}
\hline 8 \& \begin{tabular}{l}
a) \(\angle A E D=50^{\circ}\) \\
b) \(\angle C=50^{\circ}\) \\
c) \(\frac{B C}{D E}=\frac{12}{4}=3\)
\end{tabular} \& 1
1
1 \& 3 \\
\hline 9 \& \begin{tabular}{l}
a) \(0.333 \ldots=\frac{3}{9}\) \\
b) \(\sqrt{0.4444 \ldots} \times \sqrt{0.1111 \ldots}=\sqrt{\frac{4}{9}} \times \sqrt{\frac{1}{9}}=\sqrt{\frac{4}{81}}=\frac{2}{9}=0.2222 \ldots\)
\end{tabular} \& 1
2 \& 3 \\
\hline 10 \& \begin{tabular}{l}
a) \(B D=2 \times 2=4 \mathrm{~cm}\) \\
b) Area of \(\triangle B D C=12 \times \frac{2}{3}=8 \mathrm{sq} . \mathrm{cm}\) \\
Area of \(\triangle A D C=12+8=20 \mathrm{sq} . \mathrm{cm}\)
\end{tabular} \& 1
1
1 \& 3 \\
\hline \& Each questions from 11 to 21 carries 4 scores. (Answer any 8 \& \& \\
\hline 11 \& \begin{tabular}{l}
a) \(A P=\frac{16}{2}=8 \mathrm{~cm}\) \\
b)
\[
\begin{aligned}
\& C Q=\frac{30}{2}=15 \mathrm{~cm} \\
\& O Q=\sqrt{17^{2}-15^{2}}=8 \mathrm{~cm}
\end{aligned}
\] \\
c) \(O P=\sqrt{17^{2}-8^{2}}=15 \mathrm{~cm}\) \\
Distance between the chords \(=O P+O Q=15+8=23 \mathrm{~cm}\)
\end{tabular} \& 1
1
1
1 \& 4 \\
\hline 12 \& \begin{tabular}{l}
\[
\text { length }+ \text { breadth }=\frac{18}{2}=9 \mathrm{~cm}
\] \\
For dividing a line of length in the ratio 4:3
\end{tabular} \& 1
1

2 \& 4 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 13 \& \begin{tabular}{l}
\[
\text { a) } \begin{aligned}
a+b \& =2 \\
2 a+b \& =5
\end{aligned}
\] \\
b)
\[
\begin{aligned}
\& a=5-2=3 \\
\& b=2-3=-1
\end{aligned}
\]
\end{tabular} \& 1
1
1
1 \& 4 \\
\hline 14 \& \begin{tabular}{l}
a) \(B D=\sqrt{5^{2}-4^{2}}=3 \mathrm{~cm}\) \\
b) \(B C=3+3=6 \mathrm{~cm}\) \\
Perimeter of \(\triangle A B C=5+5+6=16 \mathrm{~cm}\) \\
c) \(\qquad\) (Question is not clear) \(\qquad\)
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 2
\end{aligned}
\] \& 4 \\
\hline 15 \& Fr drawing a line parallel to AB through O . \& 1

3 \& 4 \\

\hline 16 \& | a) If the numbers are taken as x and y, $x-y=6, \quad x^{2}-y^{2}=48$ |
| :--- |
| b) $x+y=\frac{x^{2}-y^{2}}{x-y}=\frac{48}{6}=8$ |
| c) $x=\frac{8+6}{2}=7 \quad, \quad y=\frac{8-6}{2}=1$ | \& 2

1
1 \& 4 \\

\hline 17 \& | a) $A M=\frac{24}{2}=12 \mathrm{~cm}$ |
| :--- |
| b) $O M=r-8$ |
| c) Join OM and OA . $\begin{aligned} & 12^{2}+(r-8)^{2}=r^{2}=\Rightarrow 144+r^{2}-16 r+64=r^{2} \\ & r=\frac{208}{16}=13 \mathrm{~cm} \end{aligned}$ | \& 1

1
1
1
1 \& 4 \\

\hline 18 \& | a) $A C=\sqrt{20^{2}-12^{2}}=16 \mathrm{~cm}$ |
| :--- |
| b) $\begin{aligned} & A N=C N=\frac{16}{2}=8 \mathrm{~cm} \\ & A M=B M=\frac{20}{2}=10 \mathrm{~cm} \end{aligned}$ | \& 1 \& \\

\hline
\end{tabular}

	$M N=\frac{B C}{2}=6 \mathrm{~cm}$ Perimeter of the small right triangle $=6+8+10=24 \mathrm{~cm}$	1 1	4
19	a) $P A=6-4=2 \mathrm{~cm}$ b) $O B: O Q=4: 6=2: 3$ c) Triangles AOB and POQ are similar . $P Q=3 \times \frac{3}{2}=4.5 \mathrm{~cm}$	1 1 1 1	4
20	a) length $=x+2 \mathrm{~cm}$ b) $p(x)=2(x+2)+2 x=4 x+4$ c) $\quad a(x)=(x+2) x=x^{2}+2 x$	1 2 1	4
21	a) Radius $=\frac{4 \sqrt{2}}{2}=2 \sqrt{2} \mathrm{~cm}$ b) Area of the circle $=\pi \times(2 \sqrt{2})^{2}=8 \pi \mathrm{sq} . \mathrm{cm}$ c) Length of a side of the square $=8 \mathrm{~cm}$ Area of the square $=8 \times 8=64 \mathrm{sq} . \mathrm{cm}$	1 1 1 1	4
Each questions from 22 to 29 carries 5 scores. (Answer any 6)			
22		4	4
23	a) $\angle A C D=30^{\circ}$ b) $C D=\sqrt{3} \mathrm{~cm}$ c) $A D=1 \mathrm{~cm}, \quad B D=C D=\sqrt{3} \mathrm{~cm}$ $B C=\sqrt{3} \times \sqrt{2}=\sqrt{6} \mathrm{~cm}$ Perimeter of $\triangle A B C=3+\sqrt{3}+\sqrt{6} \mathrm{~cm}$	1 1 1 1 1	5

24	a) length + breadth $=\frac{60}{2}=30 \mathrm{~cm}$ b) breadth $=30-x$ $a(x)=x(30-x)=30 x-x^{2}$ $\text { c) } \begin{aligned} & a(25)=25(30-25)=25 \times 5=125 \\ & a(5)=5(30-5)=5 \times 25=125 \end{aligned}$	1 1 1 1 1	5
25	a) $R+r=12$ b) Area of the sector $\mathrm{OAB}=\frac{45}{360} \times \pi R^{2}$ Area of the sector OCD $=\frac{45}{360} \times \pi r^{2}$ c) $\begin{aligned} & \frac{45}{360} \times \pi R^{2}-\frac{45}{360} \times \pi r^{2}=12 \pi \\ & R^{2}-r^{2}=12 \pi \times \frac{360}{45 \pi}=96 \\ & R-r=\frac{R^{2}-r^{2}}{R+r}=\frac{96}{12}=8 \\ & R=\frac{12+8}{2}=10 \mathrm{~cm} \quad, \quad r=\frac{12-8}{2}=2 \mathrm{~cm} \end{aligned}$	1 1 1 1 1 1	5
26			5
27	a) $A Q: Q C=A P: P D=12: 4=3: 1$ b) $\begin{aligned} & A R: B R=A P: P D=3: 1 \\ & A R=3 \times B R=9 \mathrm{~cm} \end{aligned}$	1 1 1	

	$A B=9+3=12 \mathrm{~cm}$ c) Perimeter of the parallelogram APQR $=12+9+12+9=42 \mathrm{~cm}$	1 1	5
28	a) Area of the square $=4^{2}=16 \mathrm{sq} . \mathrm{cm}$ b) Perimeter of the outer part $=4 \times \frac{270}{360} \times 2 \pi r=12 \pi \mathrm{~cm}$ c) Area of the shaded part $=4 \times \frac{270}{360} \times \pi r^{2}$ $=12 \pi \mathrm{sq} . \mathrm{cm}$ Another method (Draw circles at the vertices of the square with the radius of the given sector . If we join the sectors lie inside the square, we get a full circle. So the perimeter of the outer part is the difference of the perimeters of the four circles and the perimeter of a circle. Also the area of the shaded part is the difference of the areas of the four circles and the area of a circle.) b) Perimeter of the outer part $=4 \times 2 \pi r-2 \pi r=6 \pi r=6 \pi \times 2=12 \pi \mathrm{~cm}$ c) Area of the shaded part $=4 \times \pi r^{2}-\pi r^{2}=3 \pi r^{2}=3 \pi \times 2^{2}=12 \pi \mathrm{sq} . \mathrm{cm}$	1 2 2	5
29	a) $\frac{1}{16}+\frac{1}{32}=\frac{3}{32}=\frac{3}{2^{5}}$ b) $\frac{3}{64}$ c) $\frac{3}{2^{7}}$ d) $\frac{3}{2^{11}}$ e) $\frac{3}{2^{n+1}}$	1 1 1 1 1 1	5

