www.educationobserver.com Kerala STD IX Second Term exam 2023

PHYSICS ANSWER KEY BIJU MATHEW

KERALA IInd TERM Exam 2023- PHYSICS ANSWER KEY

	Ans	iwer
6	$\cdot 67 \times 10^{-11} Nm^2/kg^2$	
	dhesive force	
0	··· ···	
J	oule	
-	a: relative density is the densit	y compared to a reference substance
	(usually water) under standa	
	b. Density of ice is greater tha	n Kerosene, So it will sink·
a.	The area under velocity-time graph	gives the displacement
b.	The size of <u>the graph increases</u> as u	we decrease the scale.
E	very object will remain at rest or in	uniform motion in a straight line
u	nless compelled to change its state b	by the action of an external force.
	a. $F = \frac{Gm1m2}{d2}$, & x G = G x10x208	$x G = \frac{Gx10x20}{d2} = d= 5m$
	b. $F = \frac{Gx10x10}{4} = 25$	
	Work done by the applied force is po	sitive and work done by fractional
1	force is negative	
a. Graph (2) - motion of a body without acceleration		
	b. Graph (3)- a truly falling body	
	nertia of rest	Inertia of motion
1	Dust comes out of a hanging mat	Athletes take a short run before
ι	vhen beaten with a stick	doing a long jump
ŀ	Passengers standing in a bus tend to	A fan continues its rotation for
1	Call backwards when the bus	some time even after it is switched
'		

	b. Electrical energy \rightarrow mechanical energy
13	a· Impulse- momentum principle
	b. Any two applications

	Airbags in cars reduce the impact of a collision, China and glass
	wares are packed with soft material when transported, During a
	pole vault jump, the impact is reduced by falling on foam bed \cdot
14	a· Honey
	b. Viscosity
	It is the characteristic property of a liquid to oppose the relative
	motion between its different layers
15	a· Momentum before collision = m1u1 + m2u2 = (6 × 8) + (4 × 4) = 48+16=
	64Kg m⁄s
	b∙ Momentum after collision = 64 Kg m∕s
	c· Law of Conservation of momentum
16	a· mass × g _{earth} = 1752 × 10 = 17520N
	b· mass × g _{moon} = 1752 × 1·62 = 2803·2N
17	a. An aero plane flying at certain height
	b. Stretched bow and wound spring - potential energy
18	a∙ Centripetal force, fc= mv²/R = 30X36/30= 60N m= 40+10=50 Kg
	= 50 x 6x 6 = 60 N
	b. To reduce centripetal force
	a. Reduce the speed or mass of the body
	b. Increase the radius of the path
19	a· Instrument P- Common Balance
	$b\cdot$ In poles, the value g is more and weight becomes more

20	a. Zero, in free fall no reacting force is acting upward, and gravitational
	force is utilized to give acceleration to the object.
	b. Gravitational force = GM/R^2

21	a· Potential energy is converted into kinetic energy
	b. Kinetic energy= $K=1/2MV^2$ m=200g, 200/1000 = 0.2 Kg
	1/2X0·2X0·25X0·25= = 0 ·00625 J
	c• Work done = change in Kinetic energy = ^{= 0 ·00625 J=} 6·25 × 10 [−] - 3
22	a· Velocity at 3 rd second = 6m/s and velocity at 9 th second =18 m/s b· Momentum of the car at 3 rd second = 800× 6=4800kg
	m/s Momentum of the car at 9 th second = 800× 18=14400kg m/s
	c. Rate of change of momentum of the car= $\frac{m(v-u)}{t} = \frac{800(18-6)}{6}$ = 1600 N
	d· Rate of change of momentum of the car = Magnitude of force= rate of change of momentum = 1600N