DEPARTMENT OF GOVERNMENT EXAMINATIONS – CHENNAI-6 HSC SECOND YEAR EXAMINATION MARCH/APRIL - 2023 CHEMISTRY ANSWER KEY

Note: 1. Answer written with Blue or Black ink only to be evaluated

2. Choose the most suitable answer in **PART** – I from the given alternatives and write the option code and the corresponding answer.

Maximum Marks: 70

PART – I

Answer all the questions

15×1=15

Q.No	Option	'A' Type	Q.No	Option	'B'Type
1	c)	Antacid	1	a)	NaCl
2	c)	Activation energy	2	a)	Uracil
3	b)	Al	3	c)	Antacid
4	c)	[Cu(NH ₃) ₄] ²⁺	4	d)	+3
5	d)	Gel-butter	5	b)	Ethane – 1,2-diol
6	d)	HCI	6	a)	sp ²
7	a)	sp ²	7	b)	Al
8	d)	+3	8	a)	Schiff's base
9	d)	Both Assertion and Reason are true and Reason is the correct explanation of Assertion	9	b)	0
10	c)	Rn	10	c)	[Cu(NH ₃) ₄] ²⁺
11	b)	0	11	c)	Activation energy
12	a)	NaCl	12	d)	HCI
13	a)	Uracil	13	d)	Both Assertion and Reason are true and Reason is the correct explanation of
14	b)	Ethane – 1,2-diol	14	c)	Rn
15	a)	Schiff's base	15	d)	Gel-butter

Part -II Answer any SIX Questions and Question No.24 is Compulsory. 6×2=12

16	Sulphide ore	1	
	Galena, Zinc blende (or) any two suitable examples with name		2
	or formula	1/2+1/2	
17	Any two uses	1+1	2
18	Central atom Correct Definition		2
19	Number of atoms in FCC unit cell = $Nc / 8 + N_f / 2$ (or) = $8/8 + 6/2$	1	2
	= 4 (or) Correct Structure	1 1	
20	Conjugate acid – base pairs		2
	Chemical species that differ only by a proton	2	2
	(or) suitable explanation		
	(or) mentioning any one conjugate acid base pair	1	
21	correct explanation	2	2
22	$\begin{array}{c} \text{CH}_3-\text{CO}-\text{CH}_3 \ + \ 4[\text{H}] \xrightarrow{\textbf{Zn/Hg} / \text{Con HCl}} \\ \text{Acetone} & \text{CH}_3-\text{CH}_2-\text{CH}_3 \\ \text{CH}_3-\text{CO}-\text{CH}_3 \ + \ 4[\text{H}] \xrightarrow{\textbf{NH}_2-\text{NH}_2 / \text{C}_2\text{H}_5\text{ONa}} \\ \text{CH}_3-\text{CO}-\text{CH}_3 \ + \ 4[\text{H}] \xrightarrow{\textbf{NH}_2-\text{NH}_2 / \text{C}_2\text{H}_5\text{ONa}} \end{array}$	2	2
	Acetone Propane		
	(or) Correct explanation.	1	
23	Correct explanation	1	
	Any one example	1	2
24	(A) - CH ₃ CH ₂ NH ₂ (or) Ethyl amine (or) ethanamine	1	2
	(B) - CH ₃ CH ₂ NHCOCH ₃ (or) N-ethylacetamide	1	

Part-III

Answer any SIX Questions and Question No.33 is Compulsory. 6×3=18

25	Fisher tropsch synthesis:		
	$nCO + (2n + 1)H_2 \xrightarrow{500-700 \text{K,less than 50 atm}} C_nH_{2n+2} + nH_2O$		
	(or)	3	
	$nCO + 2nH_2 \xrightarrow{500-700K,less\ than\ 50\ atm} C_nH_{2n} + nH_2O$		3
	(or) unbalanced equation(or) equation without condition		
	(or) mere explanation alone	2	
26	Any three differences	3×1	3
27	a) Central metal atom / ion = Pt (or) Pt ²⁺ (or) Pt(II)	1	
	b) Co-ordination number = 4	1	
	c) Oxidation number of central metal ion= +2	1	3
28	Helmholtz electrical double layer:	3	
	Correct explanation		
	(or) Diagram alone	2	3
29	First Law : Correct statement	11/2	
	(or) Correct mathematical expression	1	_
	Second Law : Correct statement	11/2	3
	(or) Correct mathematical expression	1	
30	COO-		
	+H₃N—CH		
	R		3
	Zwitter Ion (or) any other correct structure		
31			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	3
	(or) equation without sodium ethoxide	2 ½	
	(or) Mere Explanation	2	

32	Correct explanation			2	
	Any two Examples			1/2+1/2	3
33	$t = \frac{2.303}{k} \log \frac{[A_0]}{[A]}$			1	
	$\epsilon_{90\%} = \frac{2.303}{k} \log \frac{[100]}{[100-90]}$	(or)	$t_{90\%} = \frac{2.202}{k} \log{(10)}$	1/2	
	$t_{99\%} = \frac{2303}{k} \log \frac{[100]}{[100-99]}$	(or)	$t_{99\%} = \frac{2.909}{k} \log(100)$	1/2	3
	$t_{\varphi\varphi\varphi_6}/t_{\varphi\varphi\varphi_6} = \frac{\log 100}{\log 10}$	(or)	$t_{\varphi\varphi\varrho_6}/t_{\varphi\varrho_{96}} = 2$	1	

Part- IV

Answer all the Questions

5x5=25

	Zone Refining		
(a)	Principle - fractional crystallization	1	
	Correct explanation	3	5
	Example: Germanium (Ge) / silicon (Si) / gallium (Ga) /Semiconductor	1	
	(OR)		
(b)			
	(i). (1) -1 (2) +4	1+1	2
	(ii). (1) $P_4 + 3NaOH + 3H_2O \longrightarrow 3NaH_2PO_2 + PH_3 \uparrow$	1	
	$(2) XeF6 + 3H2O \longrightarrow XeO3 + 6HF$	1	3
	(3) $Cu + 2H_2SO_4 \longrightarrow CuSO_4 + 2H_2O + SO_2 \uparrow$ con.	1	
	(or) Unbalanced equations - 1/2 + 1/2 + 1/2	11/2	

35		
(a) (i). Correct Structure	1	3
Any four points from the following. 1. Two BH ₂ units are linked by two bridged hydrogens		
2. It has eight B-H bonds.		
3. It has only 12 valence electrons unable to form normal	4×1/2	
covalent bonds		
4. The four terminal B-H bonds (2c-2e) bond. 5. Two B-H-B (3c-2e) or bridged bond.		
6. The bridging hydrogen atoms are in a plane		
7. The boron is sp ³ hybridized.		
(ii). Ethyl Borate test	2	
$H_3BO_3 + 3C_2H_5OH \xrightarrow{Conc.} B(OC_2H_5)_3 + 3H_2O$		
2 4	11/2	0
(or) Equation without conc.sulphuric acid	1	2
(or) correct explanation (or) mentioning triethyl borate or green	'	
flame (or) unbalanced equation		
(b) Bonding in metal carbonyls		5
i. The bond between metal atom and the carbonyl ligand consist	s 1	
of two components.		
ii. M← obond CO sigma bond. (or) explanation	1	
ii. The sigma bond formation increases the electron density in		
metal d orbitals.	1	
iv. Correct explanation for π -back bonding (or) suitable diagram	2	
36 Schottky defect:		
(a) Correct reason	1	
Similar size (or) density decreases. Example: NaCl.	1/2	
Diagram	1/2	5
Frenkel defect:	1/2	
Correct reason		
differ in size (or) does not affect the density	1 1/2	
Example: AgBr	1/2	
Diagram	1/2	
(OR)		

36	(i) Any two correct examples for a zero order reaction	2	* 200 200 A
(b)	(ii) uses of colloids		2
	in Tanning of leather (one use)	11/2	
	in Dulchen industry (and use)		3
37	in Rubber industry (one use)	1½	5
(a)	Oswald dilution law	1	5
()	$CH_3COOH \rightleftharpoons H^+ + CH_3COO^-$ $K_a = [H^+][CH_3COO]$	1	
	[CH ₃ COOH]		
	$K_a = (\underline{\alpha.C}) (\underline{\alpha.C})$ $(1-\alpha)C$	1	
	(1-∝)C		
	G^2C	1	
	$k_{a} = \frac{\alpha^{2}C}{1-\alpha}$ $\alpha = \sqrt{\frac{K_{a}}{C}} \text{(or)} [H^{+}] = \sqrt{K_{a}C}$		
	T-CC		
	$\alpha = \sqrt{\frac{K_a}{C}}$ (A_a) $[H^+] = \sqrt{KC}$	1	
	(OR)		
(b)	(i). Aniline is basic in nature	1	2
	It donates its lone pair to the lewis acid to form an adduct /	1	
	inhibits further the electrophilic substitution reaction.		
	(ii). Correct equation	3 2	3
	(or)Mere explanation alone		
38 (a)	(i). Correct equation	3	3
(4)	Correct equation without conc.sulphuric acid	21/2	
	(or) Mere explanation alone	2	
	(ii) . Correct equation	2	
	Correct equation without Na / ether	11/2	2
	(or) Mere explanation only	1	
	(OR)		
(b)	anhy.ZnCl ₂ $C_6H_5 - OH + NH_3 C_6H_5 - NH_2$	1	
	Δ		
	(A) (B)		
	$C_6H_5 - OH + Zn \xrightarrow{\Delta} C_6H_6 + ZnO$	1	
	(C)	1	5
	(A) -C ₆ H ₅ OH (or) Phenol	1	
	(B) -C ₆ H ₅ NH ₂ (or) Aniline	1	
	(C) - C ₆ H ₆ (or) Benzene		e S