DIRECTORATE OF GOVERNMENT EXAMINATIONS, CHENNAI- 6 HSE SECOND YEAR EXAMINATION – MARCH/APRIL – 2023 PHYSICS KEY ANSWER

NOTE:

- 1. Answers written with Blue or Black ink only to be evaluated.
- 2. Choose the most suitable answer in Part A from the given alternatives and write the option code and their corresponding answer.
- 3. For answers in Part II, Part III, Part IV like reasoning, explanation, narration description and listing of points, students may write in their own words but without changing the concepts and without skipping any point.
- 4. In numerical problems if formula is not written, marks should be given for the remaining correct steps.
- 5. In graphical representation, physical variables for X-axis and Y-axis should be marked.

TOTAL MARKS: 70

PART-I

Answer all the Questions: 15x1=15

Q.NO	OPTION	TYPE-A	Q.NO.	OPTION	TYPE-B
1	С	$\lambda_{p} \propto \lambda_{e}^{2}$	1	b	Shape memory alloys
2	С	$\frac{3}{8}I$	2	С	900 Vm ⁻¹
3	С	900 Vm ⁻¹	3	С	4.5 Ω
4	С	4.5 Ω	4	b	Water
5	d	Yellow-Violet-Orange-Silver	5	а	-40 V
6	d	$\frac{h}{\pi}$	6	а	+Z direction
7	b	2 D	7	С	Energy density
8	С	Energy density	8	b	2 D
9	а	+Z direction	9	d	1.1eV
10	b	30°	10	С	$\frac{3}{8}I$
11	С	Voltage regulator	11	b	30 ⁰
12	а	– 40 V	12	d	Yellow-Violet-Orange- Silver
13	b	Water	13	d	$\frac{h}{\pi}$
14	d	1.1eV	14	С	Voltage regulator
15	b	Shape memory alloys	15	С	$\lambda_{p} \propto \lambda_{e}^{2}$

16	The electric field at a point P at a distance r from the point charge q is defined as the force experienced by a unit charge placed at that	2	
	point(or)		2
	The force experienced by unit positive charge (or) $\overrightarrow{F} \qquad \overrightarrow{a} \qquad \overrightarrow{a} \qquad \overrightarrow{a} \qquad \overrightarrow{a}$	2	
	$\overrightarrow{E} = \frac{\overrightarrow{F}}{q_0}$ (or) $\overrightarrow{E} = K \frac{q}{r^2} \widehat{r}$ (or) $\overrightarrow{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \widehat{r}$	1	
	Q factor is defined as the ratio of voltage across L or C at resonance to Applied voltage. (or)	2	
	$Q - factor = \frac{Voltage \ across \ L \ (or) \ C \ at \ resonance}{Applied \ Voltage} $ (or)	2	2
	$Q = \frac{I_m X_L}{I_m R}$ (or) $Q = \frac{X_L}{R}$ (or) $Q = \frac{\omega_r L}{R}$ (or) $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$	1	
18	The line integral of magnetic field over a closed loop is μ_0 times net current enclosed by the loop. (or)	2	2
	$\oint \vec{B} \cdot \vec{d\ell} = \mu_0 I_{\text{enclosed}}$	1	_
19	The total internal reflection of light that happens inside the	1	
	diamond. n=2.417 (or) $i_c = 24.4^{\circ}$	1	2
20	$I \propto a^2$ (or) $I_1 \propto a_1^2$ and $I_2 \propto a_2^2$	1	
	$\frac{I_1}{I_2} = \frac{a_1^2}{a_2^2}$ (or) $\frac{a_1}{a_2} = \sqrt{\frac{I_1}{I_2}} = \sqrt{\frac{36}{1}}$	1/2	
	$\frac{a_1}{a_2} = \frac{6}{1}$	1/2	
	(or)		2
	$I \propto a^2$ (or) $I_{max} \propto (a_1 + a_2)^2$ and $I_{min} \propto (a_1 - a_2)^2$	1	
	$\frac{I_{max}}{I_{min}} = \frac{(a_1 + a_2)^2}{(a_1 - a_2)^2} \text{(or)} \frac{(a_1 + a_2)}{(a_1 - a_2)} = \sqrt{\frac{I_{max}}{I_{min}}} = \sqrt{\frac{36}{1}}$	1/2	
	$\frac{(a_1 + a_2)}{(a_1 - a_2)} = \frac{6}{1}$ and $\frac{a_1}{a_2} = \frac{7}{5}$	1/2	
21	The minimum energy needed for an electron to escape from the metal surface is called work function	1½	
	Unit - eV or Joule	1/2	2
	$\phi_0 = h \nu_o$	1	

22	Activity or decay rate cl e r seco d. Unit: Becquerel (or) curie (or) $R = \left \frac{dN}{dt} \right \text{ (or) } R = \lambda N_0 e^{-\lambda t} \text{ (or) } R = R_0 e^{-\lambda t} \text{ (or) } R = \lambda N$	1½ ½ ½	2
23	Current flow during positive half cycle AC Input D2 Current flow during negative half cycle	2	2
24	$R_T = R_0 (1 + \infty (T - T_0))$ Substitution Answer 3.96 Ω	1 ½ ½	2

PART-III

Answer Any Six ue to : Q.No. 33 is Compulsory

 $6 \times 3 = 18$

28	Diagram & Explanation	1	
	$ upto \frac{d\phi_B}{dt} = Blv $	1	3
	$\mathcal{E} = Blv \\ \times $	1	3
29	i e i e o ar spectrum are known as Fraunhofer I nes.	2	
	ti n ctra r various m are w th the u r n s i t e olar spectrum which helps in identifying em n s re en i t e un's atmosphere	1	3
30	$R_{\text{net}} = 2 + 2 = 4\Omega$	1	
	$I = \frac{V}{R} = \frac{10}{4}$	1	3
	I = 2.5 A	1	
31	Optical path o a e i i is defined as the distance d' l g t av ls in u e a e ti e it travels a distance d in the medium	11/2	
	Optical path $\mathbf{d}' = \mathbf{n} \mathbf{d}$	1/2	0
	Where, d ' ist nce travelled by the light in vacuum		3
	 n R fracti 'e index of the medium d ist ce travelled by the light in medium 	1	
32	as holcce ect – any Three	3×1	3
33	Number of atoms in $1 kg$ Of $^{235}_{92} U$	1	
	$N = \frac{6.02 X 10^{23}}{235} X 1000$	1	3
	Total energy, $Q = \frac{6.02 \times 0^{26}}{235} X \ 200 \ MeV = 5.123 \ X \ 10^{26} MeV$	1	
	In terms of joule, $Q = 8.197 \times 10^{13} J$		

PART-IV

Answer all the Que t s:

5×5=25

34 (a)	(i)	Coulomb's law – (or) Fo	Statement ula				2 1	
	(ii)	Differences b (Any Three)	o b'	g	t i na	rce	3	5
			(OR)					

34 (b)	Diagram Explanation upto $\theta = \frac{\pi}{N}$ upto $t = \frac{\pi}{N\omega}$ $V = \frac{2dN\omega}{\pi}$ Light source d Partially silvered glass plate wheel	1 1 1 1	5
35 (a)	Principle Diagram C n ru o a d orki g Upto $r = \frac{mv}{Bq}$ $f = \frac{Bq}{2\pi m} \text{ (or) } T = \frac{2\pi m}{Bq} \text{ (or) } KE = \frac{q^2 B^2 r^2}{2m}$	1 1 1	5
	(OR)		00 00
35 (b)	Diagram Explanation Path difference $\delta = \frac{a}{2} sin\theta$	1 1 1	5
	Condition for first mini $\mbox{um a sin }\theta=\lambda$ $\mbox{C n t } \mbox{f } \mbox{c n m nimum a sin}\theta=2\lambda$ $\mbox{C n t } \mbox{f } \mbox{hir } \mbox{i i } \mbox{um a sin}\theta=3\lambda$ $\mbox{Condition for n}^{th} \mbox{min m m a sin}\theta=n\lambda$ $\mbox{Where n = 1, 2, 3,}$	1	

36 (a)	Series RLC circuit Diag am & Explanation	1	
35 (u)	Phasor diagram Phasor diagram OR Vm V _L -V _C V _R A OR Vm V _L -V _C V _R A OR Vm V _L -V _C V _R A OR	1	
	E c		5
	Upto $V_m^2 = V_R^2 + (V_L - V_C)^2$	1	
	Upto $Z = \sqrt{R^2 + (X_L - X_S)^2}$	1	
	$ \tan \phi = \frac{V_L - V_C}{V_R} $ (or) $ \tan \phi = \frac{X_L - X_C}{R} $	1	
	(OR)		
36 (b)	Diagram Herron gun Thin aluminium diaphragms	1	
	Explanation Incident Scattered Scatt	2	
	Graph The state of difference of the state	1	5
	$\lambda = \frac{12.27}{\sqrt{V}} A^0 = \frac{12.27}{\sqrt{54}} A^0 : 1.67 A^0$	1	
0.7			
37	Diagram dx	1	
(a)	Explanation	1	
	A	1	5
	$Up \ to I = \frac{dQ}{dt}$	1	5
	$I = n e A v_d$	1	
	$\vec{J} = -\sigma \vec{E}$ (or) $\vec{J} = \sigma \vec{E}$	1	
	(OR)		

37 (b)	Diagram $ \text{Upto } \overrightarrow{F}_{coulomb} = \overrightarrow{F}_{entripetal} $ Nucleus is assumed to be stationary $ r_n = \frac{4\pi\varepsilon_0 (mv_n r_n)^2}{Zme^2} $ Upto $r_n = a_0 \frac{n^2}{Z} $ Upto $r_n = \frac{h}{2\pi ma_0} \frac{Z}{n} $ (or) $v_1 \alpha \frac{1}{n} $	1 1 1	5
38 (a)	Any Four r p ri s of M waves $n = \sqrt{\epsilon_{\rm r} \mu_{\rm r}}$ $n = \sqrt{2.5 \times 2.25} = 2.37 \text{ (no unit)}$	4×1 ½ ½	5
	(OR)		
38 (b)	Circuit diagram $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 1	5