BUSINESS MATHEMATICS XII - STANDARD MODEL QUESTION PAPER

(ENGLISH VERSION)

Time Allowed : 3 Hours

Maximum Marks : 200

Section - A

N.B.: (i) Answer all the 40 questions

(ii) Each question carries one mark

(iii) Choose and write the correct answer from the four choices given.

40 x 1 - 40

1) The Adjoint of
$$\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$
 is
(a) $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ (b) $\begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$
2) If AB = BA = |A| I then the matrix B is
(a) the inverse of A (b) the transpose of A
(c) the Adjoint of A (d) 2A
3) If $A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2 \end{pmatrix}$ then A⁺¹ A is
(a) 0 (b) A (c) I (d) A².
4) The rank of a non singular matrix of order n x n is
(a) n (b) n² (c) 0 (d) 1
5) The relation $R = \begin{bmatrix} a & 0 & 1 \\ b & 1 & 0 \end{bmatrix}$ is
(a) Reflexive (b)Symmetric (c) Transitive (d) Reflexive and symmetric
6) Equation of the directrix of $x^2 = 4ay$ is
(a) $x + a = 0$ (b) $x - a = 0$ (c) $y + a = 0$ (d) $y - a = 0$
7) The semi major and semi minor axes of $\frac{x^2}{25} + \frac{y^2}{25} = 1$ is
(a) (4, 5) (b) (8, 10) (c) (5, 4) (d) (10, 8)
8) The sum of focal distances of any point on the ellipse is equal to length of its
(a) minor axis (b) semi minor axis (c) major axis (d) semi major axis
(a) 2 (b) 1/2 (c) $\sqrt{2}$ (d) $\frac{1}{\sqrt{2}}$

10)	E an tha a set for	<u> </u>	- ² r (1		_	
10)	For the cost π	nction c = $\frac{1}{10^6}$ (b) $\frac{1}{15} e^{2x}$	e ² , the mar	$\frac{1}{1}e^{2x}$	s (d	$() \underline{1}_{e^{x}}$
11\	- •			10		10
11)						denotes the unit selling price Then the marginal revenue at
	(a) Rs. 5	(b) Rs. 10	(c) Rs. 4	(d) Rs. 30)
12)		change of y of change of y			and <i>x</i> is ch	anging at 4 units/sec,
	(a) 24 units/s	sec (b) 10) units/sec	(c) 2	units/sec	(d) 22 units/sec
13)	The slope of	the tangent at	(2, 8) on t	he curve y	$= x^3 is$	
	(a) 3	(b) 12	(c) 6	(d) 8		
14)						sses the y axis is
	(a) 5	(b) -5	(c) $\frac{1}{6}$	(d) -	$\frac{1}{16}$	
15)	$y = x^3$ is alwa		0		10	
	(a) An increa	sing function	of x (b) Decreasi	ing function	n of x
	(c) A constan	nt function	(d	l) None of	these	
16)]	If $u = e^{x^2 + y^2}$, the		al to			
	(a) y^2 u	(b) x^2 u		(c) 2 <i>xu</i>		(d) 2 <i>yu</i>
17.]	If $u = x^y (x > 0)$	then $\frac{\partial u}{\partial y}$ is e	qual to			
2	a. $x^{y}\log x$	b) $\log x$		c) $y^x \log x$		d) $\log y^x$
18. 7	The cost function	y = 40 - 4x	$+ x^2$ is min	imum whe	en	
ť	a) $x = 2$	b) <i>x</i> = -2		c) <i>x</i> = 4		d) $x = -4$
19.]	If $f(x)$ is an odd	function then	$\int_{-a}^{a} f(x) \mathrm{d}x$	is		
6	a) 1	b) 2a		c) 0		d) a
20. 7	The area bound	ed by the curv	$y = e^x$, th	e x - axis a	and the line	s $x = 0$ and $x = 2$ is
6	a) $e^{2}-1$	b) e ⁷ +1		c) e ²		d) e ² -2
21. 1	f the marginal	cost function]	MC = 2 - 4	1x, then the	e cost funct	tion is
	a) $2x-2x^2+k$	b) 2-4 <i>x</i> ²	2	c) $\frac{2}{x} - 4$		d) $2x-4x^2$
22. 7	Гhe order and d	egree of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\frac{\mathrm{d}y}{\mathrm{d}x}\Big]^{2} = \frac{4}{3}$	$\frac{d^2y}{dx^2}$ are		
ť	a) 3 and 2	b) 2 and 3		c) 3 and 3		d) 2 and 2

23. The solutioin o	f $x dy + y dx = 0$ is		
a) $x + y = c$	b) $x^2 + y^2 = c$	c) $xy = c$	d) $y = cx$
24. The integrating	factor of $\left(\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2y}{x}\right) =$	x^3	
a) 2 log <i>x</i>	b) e^{x^2}	c) $3 \log(x^2)$	d) x^2
25. The solution of	$f \frac{d^2 y}{dx^2} - y = 0$ is		
a) $(A + B)e^x$	b) $(Ax + B)e^{-x}$	c) $Ae^x + \underline{B}e^x$	d) $(\mathbf{A} + \mathbf{B}x) \mathbf{e}^x$
26. E =			
a) 1 + Δ	b) 1 - Δ	c) $\nabla + 1$	d) ∇ - 1
27. When $h = 1 \Delta$ ($x^{2}) =$		
a) 2 <i>x</i>	b) 2 <i>x</i> -1	c) 2 <i>x</i> +1	d) 1
28. If a discrete ran	dom variable has the p	robability mass fun	ction is
x 0 p(x) k	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	the value of k is	
a) <u>1</u> 11	b) <u>2</u> 11	c) <u>3</u> 11	4) <u>4</u> 11
29. The mean and v	variance of a binomial d	listribution are	
a) <i>np, npq</i>	b) <i>pq, npq</i>	c) <i>np</i> , \sqrt{npq}	d) <i>np</i> , <i>nq</i>
30) If X is a poissio equal to	n variate with $P(X = 1)$) = P (X = 2), the m	nean of the Poission variate is
(a) 1	(b) 2	(c) -2	(d) 3
31) The normal dist	ribution curve is		
(a) Bimodal	(b) Unimodal	(c) Skewed	(d) none of these
32) The standard er	ror of the sample mear	nis	
(a) Type I error			
(b) Type II error	r		
(c) Standard de	viation of the sampling	distribution of the	mean
(d) Variance of	the sampling distributi	on of the mean	
	mple of size 64 is taker en the standard error o		whose standard deviation is
(a) 0.5	(b) 2 (c) 4	(d) 32	

34)	Probability of rejecting the	null hypothesis w	hen it is true is	
	(a) Type I error	(b) Ty	pe II error	
	(c) Sampling error	(d) Sta	undard error	
35)	The Z-value that is used to population parameter is	establish a 95% co	onfidence interval for th	ne estimation of a
	(a) 1.28 (b) 1.65	(c)1.96 (d) 2.58	
36)	A time series consists of			
	(a) two components (b)	three components	(c) four components	(d) none of these
37)	Laspeyre's index formula u	uses the weights of	the	
	(a) base year quantities		(b) current year quant	ities
	(c) average of the weights of	of number of years	(d) none of these	
38)	Variation due to assignable	causes in the prod	luct occur due to	
	(a) faulty process		(b) carelessness of op	perators
	(c) poor quality of raw mate	erial	(d) all the above	
39)	Control charts in statistical	quality consist of	2	
	(a) three control lines	(b) up	per and lower control li	mits
	(c) the level of process	(d) all	the above	
40)	The range of correlation co	o-efficient is		
	(a) 0 to ∞	(b) -∞ 10 ∞		
	(c) -1 to 1	(d) none of thes	e	
		Section -	В	
N.B	.: (i) Answer any 10 ques	tions out of		
	15 questions given			
	(ii) Each question carr	ies six marks		$10 \ge 6 = 60$

41. Find the inverse of A =
$$\begin{pmatrix} 2 & 3 & 4 \\ 3 & 2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$$
, if it exists

- 42. Find the rank of the matrix $\begin{pmatrix} 1 & 1 & 1 & 3 \\ 2 & -1 & 3 & 4 \\ 5 & -1 & 7 & 11 \end{pmatrix}$
- 43. Find the equation of the hyperbola whose eccentricity is $\sqrt{3}$, focus is (1, 2) and the corresponding directrix is 2x + y = 1.

44. If $y = \frac{1-2x}{2+3x}$ find $\frac{Ey}{Ex}$ Obtain the values of η when x = 0 and x = 2.

45. For the cost function $y = 3x \left(\frac{x+7}{x+5}\right) + 5$, prove that the marginal cost falls continuously as the output x increases 46. If $u = \log \sqrt{x^2 + y^2}$, show that $\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial x}\right)^2 = \frac{1}{x^2 + y^2}$

47. The elasticity of demand with respect to price for a commodity is a constant and is equal to 2. Find the demand function and hence the total revenue function, given that when the price is 1, the demand is 4.

48. Solve
$$\frac{dy}{dx} + y \cos x = \frac{1}{2} \sin 2x$$

40. Solve $\frac{d^2y}{dx^2} + 4 \frac{dy}{dx^2} + 4x = 5 + e^{-x^2}$

49. Solve
$$\left[\frac{\mathrm{d} y}{\mathrm{d} x^2} + 4 \quad \frac{\mathrm{d} y}{\mathrm{d} x} + 4y = 5 + \mathrm{e}^{-x}\right]$$

50. Find the missing term from the following data.

x	:	1	2	3	4
f(x)	:	100		126	157

51. Apply Lagrange's formula to find y when x = 5 given that

x	:	1	2	3	4	7
y	:	2	4	8	16	128

52. A continuous random variable has the following p.d.f. $f(x) = kx^2, \quad 0 < x < 10$

= 0 otherwise.

Determine k- and evaluate (i) $P(0.2 \le x \le 0.5)$ (ii) $P(x \le 3)$

- 53. A random sample of marks in mathematics secured by 50 students out of 200 students showed a mean of 75 and a standard deviation of 10. Find the 95% confidence limits for the estimate of their mean marks.
- 54. Calculate the correlation co-efficient from the following data.

x	:	12	9	8	10	11	13	7
у	:	14	8	6	9	11	12	3

55. Obtain the trend values by the method of Semi-Average

Year	1993	1994	1995	1996	1997	1998	1999	2000
Netprofit (Rs lakhs)	38	39	41	43	40	39	35	25

Section - C

N.B. i) Answer any Ten Question out of 15 questions given ii) Each question carries 10 marks

 $10 \ge 10 = 100$

56. Given a directed route G;

Find the route matrix of G and using its powers, find whether G is strongly connected.

57. Suppose the inter-relationship between the production of two industries P and Q in a year (in lakhs of rupees) is

Producer	User		Et al Damar d	T-4-1 044	
Troducer	Р	Q	Final Demand	Total Output	
Р	15	10		10 3:	5
Q	20	30		15 65	5

Find the outputs when the final demand changes to 12 for P and 18 for Q

- 58. Find the equation to the hyperbola which has the lines x + 4y 5 = 0 and 2x 3y + 1 = 0 for its asymptotes and which passes through the point (1, 2).
- 59. Find the points on the curve y = (x-1)(x-2) at which the tangent makes an angle 135° with the positive direction of the *x* axis.
- 60. Find EOQ for the data given below. Also verify that carrying costs is equal to ordering costs at EOQ.

Item	Monthly	Ordering cost	Carrying cost	
	Requirements	per order	Per unit	
А	9000	Rs. 200	Rs. 3.60	

61. The demand for a commodity X is $q_1 = 15 - p_1^2 - 3p_2$ Find the partial elasticities when $p_1=3$ and $p_2=1$.

62. Evaluate
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{tanx}}$$

- 63. The demand and supply functions under pure competition are $p_d = 16 x^2$ and $P_s = 2x^2 + 4$. Find the consumers' surplus and producers' surplus at the market equilibrium price.
- 64. Suppose that the quantity demanded $Q_d = 42 4p 4\frac{dp}{dt} + \frac{d^2p}{dt^2}$ and quantity supplied $Q_s = -6 + 8_p$ where *p* is the price. Find the equilibrium price for market clearance.
- 65. Fit a straight line to the following data:
 - x:
 4
 8
 12
 16
 20
 24

 y:
 7
 9
 13
 17
 21
 25
- 66. Find the mean and variance for the following probability distribution.

$$f(x) = \begin{cases} 2e^{-2x} & , & x \ge 0 \\ 0 & , & x < 0 \end{cases}$$

67. The diameter of shafts produced in a factory conforms to normal distribution. 31% of the shafts have a diameter less than 45mm. and 8% have more than 64mm. Find the mean and standard deviation of the diameter of shafts.

Given:

Z	0.5	1.41
Area	0.19	0.42

- 68. To test conjecture of the management that 60 percent employees favour a new bonus scheme, a sample of 150 employees was drawn and their opinioin was taken whether they favoured it or not. Only 55 employees out of 150 favoured the new bonus scheme. Test the conjecture at 1% level of significance.
- 69. Calculate Fisher's Ideal Index from the following data and show how it satisfies time reversal test and factor reversal test.

Commodity	Base year (1997)		Current year (1998)		
	Price Quantity		Price	Quantity	
А	10	10	12	8	
В	8	12	8	13	
C	12	12	15	8	
D	20	15	25	10	
Е	5	8	8	8	
F	2	10	4	6	

70. From the following data construct \overline{X} and R chart and write your conclusion

Sample no	1	2	3	4	5	6	7	8	9
	46	41	43	37	37	37	44	35	37
	40	42	40	40	40	38	39	39	44
	48	49	46	47	46	49	43	48	48
Sample no	10	11	12	13	14	15	16	17	18
	45	48	36	40	42	38	47	42	47
	43	44	42	39	40	40	44	45	42
	49	48	48	48	48	48	49	37	49
	(Giver	n for <i>n</i>	n = 3,	$A_2 = 1$	1.02,	$D_{3} = 0$), D ₄ =	= 2.58)
