SSLC Model Examination February 2024.
Mathematics - English Version.
Detailed Solutions with Questions.
Prepared by Dr.V.S. Rawcendranath.

Question. 1
Consider the arithmetic sequence $1,11,21$
(a) What is its common difference?
(b) Find the $10^{\text {th }}$ term of this sequence.

Solution.
Sequence $=1,11,21$.......
a) Common difference $=x_{2}-x_{1}$

$$
=11-1=10 .
$$

b) $10^{\text {th }}$ term $=f+9 \mathrm{~d}$

$$
=7+9 \times 10=97 .
$$

.drvsr
Question. 2.

In the figure O is the centre of the circle and $\angle A Q B=110^{\circ}$.
(a) What is the measure of $\angle A P B$?
(b) What is the measure of $\angle A O B$?

Solution.

$$
\begin{aligned}
& \text { Given } \angle A Q B=110^{\circ} . \\
& \text { a) } \angle A P B=180-110=70^{\circ} . \\
& \text { [Using Cyclic quadrilateral] }
\end{aligned}
$$

$$
\text { b) } \angle A O B=2 \times 70=140^{\circ} \text {. }
$$

[Using arc theory]

Question. 3.

The marks of 8 students in a Maths test are given in ascending order as below. 20, 20, 24, 32, $x, 40,45,48$
If the median mark is 34 , then find the value of x.

Solution.

Arrange the weight in ascending order 20,20,24, 32,x,40,45,48. Given median mark $=34$
\therefore Median $=\frac{32+x}{2}=34$
$=32+x=34 \times 2$
$x=68-32=36$.

Question. 4.

The midpoints of the sides of a square are joined to form another square. If a dot is put inside the large square find the probability that it is within the shaded portion.

Solution.
 Required Probability

Area of shaded part

Area of total region
$=4 \times$ area of $r t . \Delta \div$
$8 \times$ area of rt. Δ

$=4 \times \frac{1}{2} b h \div 8 \times \frac{1}{2} b h$
$=\frac{4}{8}=\frac{1}{2}$.
.. ${ }^{-1 r v s r}$

Question. 5.

The algebraic expression of an Arithmetic sequence is $3 n-2$.
(a) Find the first term of the sequence.
(b) Find the sum of the first 50 terms.

Solution.

Given algebraic expression
$=3 n-2$.
a) First term $=3 \times 1$ - 2

$$
=3-2=1 .
$$

b) $\mathbf{d}=3$. [coefficient of n]
$S_{50}=\frac{n}{2}\left[x_{1}+x_{n}\right]$
OR $\frac{n}{2}\left[2 x_{1}+(n-1) d\right]$
$S_{50}=\frac{50}{2}[2 \times 1+(50-1) 3]$

$=25[2+49 \times 3]$
 $=25[2+147]=25 \times 149$
 $=3725$.

drvsr

Question. 6.

Draw a triangle of circumradius 3 centimetres and two of its angles 55° and $62 \frac{1}{\circ}$

Solution.

SSLC Model Examination February 2024
-6-

Question. 7.

One side of a rectangle is 12 centimetres longer than the other side and its area is 864 square centimetres.
(a) Form a second degree equation by taking the smaller side as ' x '.
(b) Calculate the lengths of the sides of the rectangle.

Solution.

Given area $=864 \mathrm{~cm}^{2}$.
$\mathrm{x}+12 \mathrm{~cm}$
ie., $I \times b=864$.
a) Let x be the smaller side Larger side $x+12 \mathrm{~cm}$.
By question $x(x+12)=864$.

$$
x^{2}+12 x=864
$$

b) $x^{2}+12 x=864$. [Using square completion method]
$x^{2}+12 x+36=864+36$

$(x+6)^{2}=900$. $x+6=\sqrt{ } 900= \pm 30$
 $$
x=30-6=24
$$
 $$
\text { Hence the smaller side }=27 \mathrm{~cm}
$$
 $$
: \text { Length }=27+12=39 \mathrm{~cm} .
$$

Question. 8.

A parallelogram is drawn with lengths of adjacent sides 10 centimetres, 6 centimetres and angle between them is 60°.

(a) Find the distance between the top and bottom side of the parallelogram.
(b) Calculate the area of the parallelogram.

Solution.

a) Consider the
angles be
$30^{\circ}, 60^{\circ}, 90^{\circ}$.

Angles: $300,600,100$.
Sides:

ie., 1: 53:2.
Distance $=3 \sqrt{3} \mathrm{~cm}$
(see the fig.)
b) Area of the parallelogram = bh

$$
=10 \times 3 \sqrt{3}=30 \sqrt{3} \mathrm{~cm}^{2} .
$$

\qquad

Question. 9.

Two vertices of an equilateral triangle are $(0,0)$ and $(10,0)$.

(a) Find the length of one side of this triangle
(b) Find the height of the triangle
(c) Find the coordinates of the third vertex

Solution.

Given vertices are $(0,0)$ and $(10,0)$
a) 10 [on inspection we get from the figure]
b) In $\triangle O C B$, angles be $30^{\circ}, 60^{\circ}, 90^{\circ}$.

ie., 1: 53:2.

Height of the triangle $=5 \sqrt{3} \mathrm{~cm}$ (see the fig.)

c) Coordinate of third vertex B

$$
=(O C, C B)=(5,5 \sqrt{ } 3) .
$$

drvsr

Question. 10.

A circle with centre at the origin passes through the point $(4,3)$.
(a) What is the radius of the circle?
(b) Write the coordinates of the points where this circle cut the y axis.

Solution.

Given origin $(0,0)$ and passes through the point $(4,3)$
a) Radius of the circle = Us distance formula
$=\sqrt{x^{2}+y^{2}}=\sqrt{4^{2}+3^{2}}$
$=\sqrt{16+9}=\sqrt{25}=5$.
b) Coordinates of the point where the circle cut the y-axis

$$
=(0,5),(0,-5) .
$$

drvsr.

Question. 11.

The $3^{\text {rd }}$ term of an arithmetic sequence is 16 and its $21^{\text {st }}$ term is 124 .
(a) Find the common difference of the sequence.
(b) Find the first term of the sequence.
(c) What is the position of 280 in this sequence?

Solution.

Given $3^{\text {rd }}$ term $=16$ $21^{\text {st }}$ term $=124$.
a) $x_{3}+18 d=x_{21}$

$$
\begin{gathered}
16+18 d=124 \\
18 d=124-16=108 \\
d=\frac{108}{18}=6 \\
O R .
\end{gathered}
$$

We know that in an arithmetic sequence, term difference is proportional to the possession difference, and the constant proportionality is the common difference ie.,

$$
\frac{X_{m}-X_{n}}{m-n}=d
$$

$$
\frac{124-16}{21-3}=\frac{108}{18}=6
$$

b) $x_{1}=x_{3}-2 d$

$$
\begin{aligned}
& =16-2 \times 6=4 \\
& \text { OR }
\end{aligned}
$$

Given $3^{\text {rd }}$ term $=16$
ie., $f+2 d=16$

$$
\begin{aligned}
f & =16-2 \times 6 \\
& =16-12=4 .
\end{aligned}
$$

c) $n=\frac{x_{n}-x_{1}}{d}+1$

$$
\begin{aligned}
& =\frac{280-4}{6}+1=\frac{276}{6}+1 \\
& =46+1=47 .
\end{aligned}
$$

.: The position of $280=47$.

OR

$$
\begin{array}{rl}
x_{n}=d n & +(f-d) \\
i e ., ~ & 280=6 n+(4-6) \\
280 & =6 n-2 \\
280 & +2=6 n \\
6 n & =282 \\
n & =\frac{282}{6}=47 .
\end{array}
$$

.: The position of $280=47$.

drvsr

Question. 12.

One box contains 10 paper slips numbered 1 to 10 and another box contains 20 paper slips numbered 1 to 20 . One slip is taken from each box.
(a) In how many different ways can we choose a pair of slips?
(b) What is the probability of both numbers being the same?
(c) What is the probability of getting one even number and one odd number?

Solution.

$$
\begin{aligned}
\text { Box - 1. } \rightarrow & 1,2,3,4,5,6,7,8 \\
& 9,10 \\
\text { Box - 2. } \rightarrow & 1,2,3,4,5,6,7,8,9,10 \\
& 11,12,13,14,15,16 \\
& 17,18,19,20
\end{aligned}
$$

a) Total ways $=m \times n$

$$
=10 \times 20=200
$$

b) Both numbers being same ie., $(1,1),(2,2),(9,9),(10,10)$
= 10

$$
=n(F) / n(N)=\frac{10}{200}=\frac{1}{20} \text {. }
$$

c) Probability of one even number and one odd number

$=\frac{\text { Even } x+\text { odd } \times \text { e ven }}{\text { Total }}$
 $=\frac{5 \times 10+5 \times 10}{200}=\frac{50+50}{200}=\frac{100}{200}$
 $=\frac{1}{2}$ 2 .

Question. 13.

10 added to the product of a natural number and the number 7 more than that is 304 .
(a) If the first number is x, what will be the next number?
(b) Form a second degree equation and find the two numbers.

Solution.

a) Let the first number be x (Given)

The second number be $x+7$.

$$
\begin{aligned}
& \text { b) By question, } \\
& x(x+7)+10=304 \\
& x^{2}+7 x=304-10=294 \\
& x^{2}+7 x-294=0
\end{aligned}
$$

[Using factorizing method]

$$
(x+21)(x-14)=0
$$

$$
x+2=0 \text { or } x-14=0
$$

$$
x=-2 \text { or } x=14
$$

$$
-2 \text { rejected, so } x=14
$$

Hence the fist number $=14$ Second number = $14+7=21$. diver.

Question. 14.

A ladder leans against a wall with its foot 3 metres away from the wall and makes an angle 60° with the floor.

(a) Find the length of the ladder.
(b) The foot of the ladder is pulled to make an angle 30° with the floor. How high will be its top from the ground ?

Solution.
 In $\triangle A O B$, angles be $30^{\circ}, 60^{\circ}, 90^{\circ}$ ie., 1: 53:2. ie., $O A=3 \mathrm{~m}$. .: OB 3/3.

AB $2 \times 3=6 \mathrm{~m}$
Hence the length of the ladder $=6 \mathrm{~m}$.
b) Consider the $\triangle O C D$, angles be $30^{\circ}, 60^{\circ}, 90^{\circ}$ ie., 1: 53:2.
Here $C D=A B=6 m$
:: the lheight of the ladder

$$
=3 \mathrm{~m} .
$$

Question. 15.

(a) Find the distance between the points $(-1,2)$ and $(5,10)$.
(b) Prove that the line joining these points passes through the point $(11,18)$.

Solution.

Given points $(-1,2)$ and $(5,10)$
a) Distance $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{(5+1)^{2}+(10-2)^{2}} \\
& =\sqrt{6^{2}+8^{2}}=\sqrt{36+64} \\
& =\sqrt{100}=10 .
\end{aligned}
$$

b) Given $(11,18)$

Slope $A B$

$=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$=\frac{10-2}{5+1}=\frac{8}{6}=\frac{4}{3}$

Slope $A C=\frac{18-2}{11+1}=\frac{16}{12}=\frac{4}{3}$

Here the slope $A B=A C$.

 Hence proved.
OR

Distance of $A B=10$
Distance of $B C=\sqrt{6^{2}+8^{2}}=10$.
Distance of $A C=\sqrt{10^{2}+16^{2}}=20$. Here $A B+B C=A C$ Hence proved.

Question. 16.

Draw a circle of radius 3 centimetres. Mark a point 7.5 centimetres away from the centre and draw the pair of tangents to the circle from this point.

Solution.

Construction

Draw a circle with a radius

$3 \mathrm{~cm} O$ as its center. Draw OP= 7.5 cm line and draw
perpendicular to OP. Draw a circle $O Q$ as radius and cut it A and B. Join AP and BP becomes the tangents.

Question. 17.

The incircle of a triangle touches the sides at P, Q and R. The perimeter of the triangle is 24 centimetres and the length of $A B$ is 7 centimetres.

(a) Prove that $\mathrm{AP}+\mathrm{BQ}+\mathrm{CR}=12$ centimetres.
(b) Find the length of QC .

Solution.

a) $A P=A R, B P=B Q, C R=C Q$
$A B+B C+A C=24$
ie $A P+B P+B Q+Q C+A R+C R=24$
$A P+B Q+B Q+C R+A P R=24$
$2(A P+B Q+C R)=24$
ie $A P+B Q+C R=\frac{24}{2}=12 \mathrm{~cm}$.
b) $A P+B Q=7$
$C R=12-7=5$
ie $Q C=C r=5 \mathrm{~cm}$.

Question. 18.

A cone of radius 12 centimetres is to be made by folding a sector cut from a circle of radius 20 centimetres.
(a) What should be the central angle of the sector?
(b) Calculate the curved surface area of the cone.

Solution.

Given radius of the cone $=12 \mathrm{~cm}$ Radius of the sector $=20 \mathrm{~cm}$.
a) Hear we know that the slant height of the cone = the radius of the sector or circle.
ie., $R=I=20 \mathrm{~cm}$.
$\frac{r}{/}=\frac{x}{360}:: \frac{12}{20}=\frac{x}{360}$
$x=\frac{12 \times 360}{20}=\frac{4320}{20}=216^{\circ}$.
b) CSA of the cone $=\pi r l$
$=\pi \times 12 \times 20=240 \pi \mathrm{~cm}^{2}$
...

Question. 19.

A line is drawn by joining the points $(2,3)$ and $(5,9)$
(a) Find the slope of the line.
(b) Find the equation of the line.
(c) Check whether $(1,5)$ is a point on this line.

Solution.

Given points are $(2,3)$ and $(5,9)$.
a) Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{9-3}{5-2}=\frac{6}{3}=2$.
b) Equation of the line

$$
=y-y_{1}=m\left(x-x_{1}\right)
$$

$=y-3=2(x-2)$
$=y-3=2 x-4$.
$2 x-4-y+3=0$
$2 x-y-1=0$.
c) Given point be $(1,5)$

Put $x=1$ and $y=5$ in the equation $2 x-y-1=0$
ie., 2×1-5-1

$$
\begin{aligned}
& 2-5-1 \\
& 2-6=-4 \neq 0 .
\end{aligned}
$$

.: The point $(1,5)$ is not on the line.
drys
Question. 20.
Consider the polynomial $\mathrm{P}(x)=2 x^{2}-7 x+9$
(a) Find the value $\mathrm{P}(2)$
(b) Find the solutions of the equation $\mathrm{P}(x)-\mathrm{P}(2)=0$

Solution.

Given $P(x)=2 x^{2}-7 x+9$.
a) $P(2)=2 \times 2^{2}-7 \times 2+9$

$$
=8-14+9=17-14=3 .
$$

$$
\text { b) } \begin{aligned}
& P(x)-P(2)=0 . \\
& 2 x^{2}-7 x+9-3=0 \\
& 2 x^{2}-7 x+6=0 \\
& \Rightarrow 2 x^{2}-4 x-3 x+6=0 \\
& \Rightarrow\left(2 x^{2}-4 x\right)-(3 x-6)=0 \\
& \Rightarrow 2 x(x-2)-3(x-2)=0 \\
& \Rightarrow(2 x-3)(x-2)=0 \\
& \text { ie. } 2 x-3=0, \text { or } x-2=0 \\
& 2 x=3 \text { or } x=2 \\
& x=\frac{3}{2} \text { or } x=2 .
\end{aligned}
$$

...drvsr.

Question. 21.

A solid metal hemisphere of radius 10 centimetres is melted and recast into small solid spheres of radius 1 centimetre each. How many such spheres can be made?

Solution.

Radius of hemisphere $=10 \mathrm{~cm}$. Radius of sphere $=1 \mathrm{~cm}$.
Number of sphere $=$ Volume of hemisphere \div Volume of sphere
Volume of hemisphere $=\frac{2}{3} \pi r^{3}$.
$=\frac{2}{3} \pi \times 10^{3}$.
Volume of sphere $=\frac{4}{3} \pi r^{3}$
$=\frac{4}{3} \pi \times 1^{3}$.
:- Number of sphere
$=\frac{2}{3} \pi \times 10^{3} \div \frac{4}{3} \pi \times 1^{3}=500$.
... . .drvSr .

SSLC Model Examination February 2024 -30- Prepared by Dr.\%. S. Raveendranath.

Question. 22.

The first term of an arithmetic sequence is 5 and the common difference is 4 .
(a) What is the algebraic expression for this sequence?
(b) What is the algebraic expression for the sum of first n terms of this sequence?
(c) Find the sum of first 20 terms of this sequence.

Solution.

Given $x_{1}=5: d=4$.
a) Algebraic expression
$=d n+(f-d)$
$=4 n+(5-4)$
$=4 n+1$.

$=2 n^{2}+(5-2) n$
$=2 n^{2}+3 n$.
c) $S_{20}=2 \times(20)^{2}+3 \times 20$

$=800+60=860$.

drvsr

Question. 23.

A circle passes through the origin, $(-3,0)$ and $(0,4)$.

(a) Find the length of the diameter of circle.
(b) What are the coordinates of the centre?
(c) Write the equation of the circle.

Solution.

Given, points $(-3,0)$ and $(0,4)$ Origin (0,0)
a) Diameter of the circle
$=\sqrt{x^{2}+y^{2}}$
$=\sqrt{3+4}$
$=\sqrt{9+16}=\sqrt{25}$
$=5$.
b) Center

$=\left(\frac{x+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$=\left(\frac{0-3}{2}, \frac{4+0}{2}\right)=\left(\frac{-3}{2}, \frac{4}{2}\right)$
$=\left(\frac{-3}{2}, 2\right)$
c) Equation of the circle
$(x-a)^{2}+(y-b)^{2}=r^{2}$.
$\left(x+\frac{3}{2}\right)^{2}+(y-2)^{2}=\left(\frac{5}{2}\right)^{2}$.

$$
\begin{aligned}
& \Rightarrow x^{2}+3 x+\frac{9}{4}+y^{2}-4 y+4=\frac{25}{4} \\
& \Rightarrow x^{2}+y^{2}+3 x-4 y+\frac{9}{4}+4=\frac{25}{4} \\
& \Rightarrow x^{2}+y^{2}+3 x-4 y+4=\frac{25}{4}-\frac{9}{4} \\
& \Rightarrow x^{2}+y^{2}+3 x-4 y+4=\frac{16}{4} \\
& \Rightarrow x^{2}+y^{2}+3 x-4 y=4-4 \\
& \Rightarrow x^{2}+y^{2}+3 x-4 y=0
\end{aligned}
$$

Question. 24.

Draw a triangle of sides 4 centimetres, 5 centimetres and angle between them $7 f^{\prime \prime}$. Draw the incircle of the triangle and measure its inradius.

Solution.

Construction

Draw the triangle in the given

measurement. Draw any two angle bisector and meet its at o And then draw a circle.
Radius $=1.3 \mathrm{~cm}$

Question. 25.

A toy is in the shape of a cone attached to a hemisphere. Its common radius is 3 centimetres and the total height is 17 centimetres.

(a) What is the height of the cone?
(f) Find the volume of the toy.

Solution.

Given common radius $=3 \mathrm{~cm}$ Height $=17 \mathrm{~cm}$. a) Height of the cone
 $$
=17-3=14 \mathrm{~cm} .
$$

b) Volume of the toy = Volume of cone + volume of hemisphere.
Volume of the cone $=\frac{1}{3} \pi r^{2} h$.
$=\frac{1}{3} \times \pi \times 3 \times 3 \times 14=42 \pi \mathrm{~cm}^{3}$
Volume of the hemisphere $=\frac{2}{3} \pi r^{3}$
$=\frac{2}{3} \pi \times 3 \times 3 \times 3=18 \pi \mathrm{~cm}^{3}$.
:: The volume of the toy
$=42 \pi+18 \pi=60 \pi \mathrm{~cm}^{3}$.

Question. 26.

The table shows the number of workers in a company sorted according to their daily wages.

Daily wages (Rs.)	Number of Workers
$800-900$	5
$900-1000$	7
$1000-1100$	6
$1100-1200$	10
$1200-1300$	15
$1300-1400$	2

(a) If the daily wages are arranged in ascending order, what will be the anoumed wage of the 19 th worker?
(b) Find the median wage.

Solution.

Class	Frequency	Wages	cf
$800-900$	5	<900	5
$900-1000$	7	<1000	12
$1000-1100$	6	$\ll 1100$	18
$1100-1200$	10	<1200	28
$1200-1300$	15	<1300	43
$1300-1400$	2	<1400	45
	45		

SSLC Model Examination February 2024 -38- Prepared dy Dr.\%. S. Raweendranath.

$$
\begin{aligned}
\text { Now } d & =\frac{1200-1100}{10}=\frac{100}{10}=10 . \\
\frac{d}{2} & =\frac{10}{2}=5
\end{aligned}
$$

$x_{19}=1100+\frac{d}{2}=1100+5$ $=1105$.
b) Median position $=\frac{45+1}{2}=\frac{46}{2}$

$$
=23 .
$$

Hence the median $=x_{23}$.

$$
\begin{gathered}
=x_{19}+4 d \\
=1105+4 \times 10 \\
=1105+40=1145 .
\end{gathered}
$$

Question. 27.

A boy 1.5 metre tall, standing at the top of a building 8.5 metre high, sees the top of a tower at an elevation of 40° and the bottom of the tower at a depression of 50°.
(a) Draw a rough figure using the given details.
(b) How far is the building from the tower?
(c) Find the height of the tower.
$\left(\tan 40^{\circ}=0.84, \tan 50^{\circ}=1.2\right)$

Solution.

a)

b) In $\triangle A B F, \frac{A B}{A F}=\tan 40$.

AB $\frac{A B}{10}=\tan 40$
$A B=10 \times 0.84=8.4 \mathrm{~m}$
c) In $\triangle E D F, \frac{E D}{F D}=\tan 40$.
$\frac{E D}{804}=0.84$
$E D=8.4 \times 0.84=7.056$
Hence the height of the tower $=$ $10+7.056=17.056 \mathrm{~m}$.

Question. 28.

Two circles meet at point $\mathrm{C} . \mathrm{AB}$ and CD are common tangents to the circles.

(a) Prove that D is the midpoint of AB .
(b) Find the measure of $\angle \mathrm{ACB}$

Solution.

a) Here $C D$ and are tangents So, $A D=C D$ and $B D=C D$

ie $A D=B D$

ie D be the mid point of $A B$. Hence proved.
b) $A D=C D$ and $B D=C D$
ie $\angle D A C=\angle D C A=x$ and $\angle D B C=$
$D C B=y$
In $\triangle A B C, x+x+y+y=180$
$2 x+2 y=180$
$2(x+y)=180$
$x+y=\frac{180}{2}=.90$
ie $\angle A C B=90^{\circ}$.
\square
drvsr
Question. 29.

See the pattern given below.

$$
\begin{array}{r}
1+2+1=4 \\
1+2+3+2+1=9 \\
1+2+3+4+3+2+1=16 \\
1+2+3+4+5+4+3+2+1=25
\end{array}
$$

(a) Write the $5^{\text {th }}$ line of the pattern.
(b) Find the sum of the line

$$
1+2+3+\ldots \ldots \ldots+13+14+15+1 \dot{4}+13+\ldots \ldots \ldots+2+1
$$

(c) Find the middle number of the line that gives the sum 400 .
(d) Find the value of n if

$$
1+2+3+\ldots \ldots \ldots+(3 n-2)+(3 n-1)+(3 n-2)+\ldots .+2+1=2500
$$

Solution.
 a) $1+2+3+4+5+6+5+$ $4+3+2+1=36$ b) $1+2+\ldots \ldots+14+15+14+14+$ $\ldots . .+1=15^{2}=225$. c) Middle number $=20$. d) $(3 n-1)^{2}=2500$.

3n-1 $=\sqrt{2500}=50$ $3 n=50+1=51$
 $$
\mathbf{n}=\frac{51}{3}=27
$$

.......................................drvsr

SSLC Model Examination February 2024. Mathematics - English Version. Detailed Solutions with Questions. Prepared by Dr.V. S. Raveendralhath.

