Qn. No.	Sub Qns	Answer Key/Value Points	$\begin{gathered} \text { Scor } \\ \text { e } \end{gathered}$	Total
Answer any 4 questions from 1 to 5. Each carries 1 score				
1.		(b) 3	1	1
2.		Dry cell/Mercury cell (Button cell)	1	1
3.		Linkage isomerism	1	1
4.		(d) SOCl_{2}	1	1
5.		Vitamin C	1	1
Answer any 8 questions from 6 to 15. Each carries 2 scores				
6.	(i) (ii)	van't Hoff factor (i) is defined as: $\begin{array}{ll} & i=\frac{\text { Normal molar mass }}{\text { Abnormal molar mass }} \\ \text { OR, } & i=\frac{\text { Observed colligative property }}{\text { Calculated colligative property }} \\ \text { OR, } & i=\frac{\text { Total number of moles of particles after association/dissociation }}{\text { Number of moles of particles before association/dissociation }} \\ i=2 & \\ \hline \end{array}$	1 1	2
7.	(i) (ii)	Galvanic cells are devices that convert chemical energy of some redox reactions to electrical energy. OR, these are cells which produce electricity by some chemical reactions. $\mathrm{Zn}(\mathrm{s})\left\|\mathrm{Zn}^{2+}(\mathrm{aq})\right\|\left\|\mathrm{Cu}^{2+}(\mathrm{aq})\right\| \mathrm{Cu}(\mathrm{s})$ OR, $\quad \mathrm{Zn}\left\|\mathrm{Zn}^{2+}\right\|\left\|\mathrm{Cu}^{2+}\right\| \mathrm{Cu}$	1 1	2
8.		These are reactions which appear to follow higher order but actually follow first order kinetics. E.g.: Hydrolysis of ester OR, Inversion of cane sugar OR, Any hydrolysis reaction	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
9.	(i) (ii)	The factors affecting rate of a chemical reaction are nature of the reactants, concentration of the reactants, temperature, pressure, catalyst and radiation or light. [Any 2 required] $\mathrm{r}=\mathrm{k}\left[\mathrm{NH}_{3}\right]^{0} \mathbf{O R}, \mathrm{r}=\mathrm{k}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
10.	(i)	Finkelstein reaction: Alkyl chlorides or bromides when treated with Nal in dry acetone, alkyl iodides are formed. This reaction is known as Finkelstein reaction. $\mathrm{R}-\mathrm{X}+\mathrm{NaI} \longrightarrow \mathrm{R}-\mathrm{I}+\mathrm{NaX} \quad \text { (where } \mathrm{X}=\mathrm{Cl} \text { or } \mathrm{Br} \text {) }$ Fittig Reaction: Aryl halides when treated with sodium in dry ether, we get diaryls (diphenyls). OR, Chlorobenzene when treated with sodium in dry ether, we get diphenyl.	1 1	2

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& Application: Desalination of sea water OR, Purification of water. \& 1 \& \\
\hline 17. \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
Molar conductivity is the conductivity of 1 mole of an electrolytic solution kept between two electrodes of a conductivity cell with unit area of cross section and at a distance of unit length. \\
OR, Molar conductivity of a solution at a given concentration is the conductance of ' \(V\) ' volume of a solution containing one mole of electrolyte kept between two electrodes with area of cross section \(A\) and distance of unit length. \\
OR, Molar conductivity, \(\Lambda_{m}=\) k.V \\
OR, \(\Lambda_{m}=\frac{k}{c}\) (where k is the conductivity and c is the concentration of the electrolytic solution in \(\mathrm{mol} / \mathrm{m}^{3}\)). \\
OR, Molar conductivity, \(\Lambda_{m}=\frac{1000 \mathrm{k}}{M}\) [Where M is the molarity of the solution].
\[
\Lambda_{\mathrm{m}}=\Lambda_{\mathrm{m}}{ }_{\mathrm{m}}-\mathrm{A} \sqrt{c}
\]
\end{tabular} \& 1

1 \& 3 \\
\hline 18. \& (i)

(ii) \& Here $\mathrm{k}=5.5 \times 10^{-14} \mathrm{~s}^{-1}$

$$
\begin{aligned}
& \mathrm{t} 1 / 2=\frac{0.693}{k} \\
&=\frac{0.693}{5.5 \times 10^{-14}}=1.26 \times 10^{13} \mathrm{~s} \\
& \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1} \mathrm{OR}^{-1} \mathrm{M}^{-1} \mathrm{~s}^{-1} \mathrm{OR}, \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~min}^{-1} \mathrm{OR}, \mathrm{M}^{-1} \mathrm{~min}^{-1}
\end{aligned}
$$ \& 1

1
1 \& 3 \\

\hline 19. \& | (i) |
| :--- |
| (ii) | \& | Because of the presence of partially filled d-orbitals OR, due to d-d transition. Electronic configuration of element with atomic number 25 is: [Ar] 3d $4 s^{2}$ |
| :--- |
| For divalent ion, the configuration becomes [Ar] 3d ${ }^{5}$ |
| So there are 5 unpaired electrons (i.e. $\mathrm{n}=5$) |
| Magnetic moment $\left(\mu_{\mathrm{s}}\right)=\sqrt{n(n+2)}=\sqrt{5(5+2)}=\sqrt{35}=5.91 \mathrm{BM}$ | \& 1

$1 / 2$
$1 / 2$
$1 / 2$
1 \& 3 \\

\hline 20. \& \& | Potassium dichromate is prepared from chromite ore $\left(\mathrm{FeCr}_{2} \mathrm{O}_{4}\right)$. The preparation involves the following three steps: |
| :--- |
| 1. Conversion of chromite ore to sodium chromate by fusing it with sodium carbonate in presence of air. $4 \mathrm{FeCr}_{2} \mathrm{O}_{4}+8 \mathrm{Na}_{2} \mathrm{CO}_{3}+7 \mathrm{O}_{2} \rightarrow 8 \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{CO}_{2}$ |
| 2. Acidification of sodium chromate with sulphuric acid to sodium dichromate. $2 \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{H}^{+} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}$ |
| 3. Conversion of sodium dichromate to potassium dichromate by treating with potassium chloride. $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{KCl} \rightarrow \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{NaCl} \quad \text { [Explanation or equation required] }$ | \& 1

1
1 \& 3 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 21. \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
Tetraamminedichloridocobalt(III) chloride \\
Geometrical isomers of \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}\)are: \\
cis isomer \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]\)
\[
\operatorname{trans}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]
\] \\
None of the geometrical isomers of this complex can show optical activity. [Both cis and trans isomers of \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}\)have plane of symmetry. So they are optically inactive. Also, optical isomerism is commonly shown by octahedral complexes containing didentate ligands].
\end{tabular} \& 1

1
1 \& 3 \\

\hline 22. \& | (i) |
| :--- |
| (ii) |
| (iii) | \& | A co-ordination compound or complex salt keeps its identity both in solid and solution states. While a double salt keeps its identity only in solid state. OR, A complex ion does not get ionized in solution, while a double salt gets ionized. Chelating ligands are ligands which can bind to the central atom in more than one position and form ring complexes. |
| :--- |
| OR, Di - or polydentate ligands can bind to the central atom through two or more donor atoms and form ring complexes. Such ligands are called chelating ligands. Ethane-1,2-diamine OR, ethylene diamine (en) and Oxalate ion ($\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ or Ox^{2-}). | \& 1

1
1 \& 3 \\

\hline 23. \& | (i) |
| :--- |
| (ii) |
| (iii) | \& | Due to the presence of inter molecular hydrogen bonding in alcohols OR, due to the absence of hydrogen bonding in haloalkanes. |
| :--- |
| Phenols are acidic, due to the greater electronegativity of sp^{2} hybridized carbon atom to which -OH group is bonded OR, due to the greater stability of phenoxide ion compared to phenol. |
| Because the alkoxy group is ortho-para directing OR, due to greater electron density at ortho and para positions, the electrophile enters at these positions. | \& 1

1
1 \& 3 \\

\hline 24. \& | (i) |
| :--- |
| (ii) |
| (iii) | \& | Aldehydes are more reactive than ketones in nucleophilic addition reactions due to steric reason and electronic reason. OR, due to the presence of $+I$ effect (electron donating inductive effect) and steric hindrance of 2 alkyl groups in ketones. |
| :--- |
| Clemmensen reduction OR, Wolff-Kishner reduction. |
| Esterification: Carboxylic acids (or, acid chlorides or acid anhydrides) when heated with alcohols or phenols in the presence of a mineral acid like concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ or HCl gas, we get esters. |
| OR, $\mathrm{R}-\mathrm{COOH}+\mathrm{R}^{\prime}-\mathrm{OH} \underset{ }{\stackrel{\mathrm{H}^{+}}{\rightleftarrows}} \mathrm{R}-\mathrm{COOR}^{\prime}+\mathrm{H}_{2} \mathrm{O}$ |
| OR, $\begin{aligned} & \mathrm{CH}_{3}-\mathrm{COOH}+\mathrm{CH}_{3}-\mathrm{OH} \underset{\text { Acetic acid Methanol }}{\stackrel{\mathrm{H}^{+}}{\rightleftarrows}} \mathrm{CH}_{3}-\mathrm{COO}^{2}-\mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O} \\ & \text { Methyl acetate } \end{aligned}$ | \& 1

1
1 \& 3 \\
\hline 25. \& (i) \& Aniline when treated with NaNO_{2} and HCl to form Benzenediazonium salt, which on treating with Cuprous chloride or copper powder to give chlorobenzene. \& 2 \& \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& (ii) \& \begin{tabular}{l}
OR, diazotization of Aniline followed by Sandmeyer's reaction or Gattermann's reaction. \\
OR, \\
Hoffmann Bromamide degradation reaction: When an amide is treated with bromine and alcoholic NaOH , we get a primary amine with one carbon atom less than that present in the amide. \\
OR, \(\quad \mathrm{R}-\mathrm{CO}-\mathrm{NH}_{2}+\mathrm{Br}_{2}+4 \mathrm{NaOH} \longrightarrow \mathrm{R}-\mathrm{NH}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{NaBr}+2 \mathrm{H}_{2} \mathrm{O}\) \\
OR, \(\mathrm{CH}_{3}-\mathrm{CO}^{2}-\mathrm{NH}_{2}+\mathrm{Br}_{2}+4 \mathrm{NaOH} \longrightarrow \mathrm{CH}_{3}-\mathrm{NH}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{NaBr}+2 \mathrm{H}_{2} \mathrm{O}\) \\
Ethanamide Methanamine \\
OR, any other example
\end{tabular} \& 1 \& 3 \\
\hline 26. \& (i) \& \begin{tabular}{l}
The amino acids which cannot be synthesized in the body and must be obtained through diet, are known as essential amino acids. \\
E.g.: Valine, Leucine, Isoleucine, Arginine, Lysine, Threonine, Methionine, Phenylalanine, Tryptophan and Histidine. \\
[Any 2 examples required] \\
E.g. for fibrous protein: Keratin and myosin \\
E.g. of globular proteins Insulin and albumins [Any 1 example for each is required]
\end{tabular} \& 1
1
1
\(1 / 2\)
\(1 / 2\) \& 3 \\
\hline \& \& Answer any 4 questions from 27 to 31 . Each carries 4 scores \& \& \\
\hline 27. \& (i) \& \begin{tabular}{l}
Non-ideal solutions: Solutions which do not obey ideal gas equation at all concentrations. \\
OR, solutions for which \(p_{1} \neq p_{1}^{0} \cdot \chi_{1}\) and \(p_{2} \neq p_{2}^{0} \cdot \chi_{2}\) are known as non-ideal solutions. OR, these are solutions for which vapour pressure is either higher or lower than that predicted by Raoult's law. \\
For solutions which show negative deviation from Raoult's law, \(\mathrm{p}_{1}<\mathrm{p}_{1}^{0} \cdot \chi_{1}, \mathrm{p}_{2}<\mathrm{p}_{2}^{0} \cdot \chi_{2}\), \(\Delta_{\text {mix }} \mathrm{H}<0\) and \(\Delta_{\text {mix }} \mathrm{V}<0\) \\
Here the solute-solvent interactions (\(A-B\) interactions) are stronger than solutesolute interaction (\(A-A\) interaction) and solvent-solvent interaction (B-B interaction). The vapour pressure - composition graph for such a solution is:
\end{tabular} \& 1

$111 / 2$ \& 4 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& (iii) \& \begin{tabular}{l}
E.g. solution of phenol and aniline, chloroform and acetone. [Any one example is required] \\
The solutions which show a large positive deviation from Raoult's law form minimum boiling azeotrope at a particular composition. \\
E.g. 95\% aqueous ethanol solution by volume.
\end{tabular} \& \[
1 / 2
\]
\[
1
\] \& \\
\hline 28. \& (i) \& \begin{tabular}{l}
Kohlrausch's law states that the limiting molar conductivity of an electrolyte is the sum of the individual contributions of the anion and the cation of the electrolyte. \\
OR, For an electrolyte like \(A_{x} B_{y}\) which dissociates as: \(A_{x} B_{y} \rightarrow x A^{y+}+y B^{x-}\)
\[
\Lambda^{0}{ }_{\left(A_{x} B y\right)}=\mathrm{x} \cdot \lambda_{\left(A^{y+}\right)}^{0}+\mathrm{y} \cdot \lambda_{\left(B^{x-}\right)}^{0}
\] \\
Application: Determination of limiting molar conductivity \(\left(\Lambda^{0}{ }_{m}\right)\) of weak electrolytes, Determination of degree of dissociation and dissociation constant of weak electrolytes. \\
[Any one application is required]
\[
\Lambda_{m}=\frac{1000 \times \mathrm{k}}{M}
\] \\
Here \(\mathrm{k}=0.01148 \mathrm{~S} \mathrm{~cm}^{-1}\) and \(\mathrm{M}=0.05 \mathrm{~mol} \mathrm{~L}^{-1}\) \\
So, \(\Lambda_{m}=\frac{1000 \times 0.01148}{0.05}=\mathbf{2 2 9 . 6} \mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1}\)
\end{tabular} \& \begin{tabular}{l}
1 \\
1 \\
1 \\
1
\end{tabular} \& 4 \\
\hline 29. \& (i) \& \begin{tabular}{l}
In \(\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}\), in presence of \(\mathrm{CN}^{-}\)ligands, electron pairing in d-orbitals of \(\mathrm{Ni}^{2+}\) occurs. So, \(\mathrm{Ni}^{2+}\) is in \(\mathbf{d s p}^{2}\) hybridisation. So it has a square planar structure. Due to the absence of unpaired electrons, it is diamagnetic. \\
But in \(\left[\mathrm{NiCl}_{4}\right]^{2-}\), in presence of \(\mathrm{Cl}^{-}\)ligands, electron pairing in d-orbitals of \(\mathrm{Ni}^{2+}\) does not occur. So, \(\mathrm{Ni}^{2+}\) is in \(\mathbf{s p}^{3}\) hybridisation. So it has a tetrahedral structure. Due to the presence of unpaired electrons, it is paramagnetic. \\
OR, \\
\(\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}\) : Here the central atom Ni is in +2 oxidation state. The electronic configuration of \(\mathrm{Ni}^{2+}\) is:
\[
\mathrm{Ni}^{2+}-[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{0} 4 \mathrm{p}^{0}
\] \\
Here the co-ordination number of Ni is 4 and hence the no. of vacant orbitals required \(=4\). In presence of the ligand \(\mathrm{CN}^{-}\), the electrons in 3 d level get paired. \\
Now one 3d orbital, one 4s orbital and two 4p orbitals undergo dsp \({ }^{2}\) hybridization to form 4 new orbitals. Thus, the complex has square planar geometry and is diamagnetic, due to the absence of unpaired electron. \\
\(\left[\mathrm{NiCl}_{4}\right]^{2-}\) : Here also the central atom Ni is in +2 oxidation state.
\[
\mathrm{Ni}^{2+}-[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{0} 4 \mathrm{p}^{0}
\] \\
Here the co-ordination number of Ni is 4 and hence the no. of vacant orbitals required \(=4\). In presence of the ligand \(\mathrm{Cl}^{-}\), the electrons in 3d level do not get paired. \\
Now one 4 s orbitals and three \(4 p\) orbitals undergo \(\mathbf{s p}^{\mathbf{3}}\) hybridization to form 4 new orbitals. Thus, the complex has tetrahedral geometry and is paramagnetic because of the presence of unpaired electron.
\end{tabular} \& \(11 / 2\)
\(11 / 2\)

(1112)

(11⁄2) \& 4 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& (ii) \& \& 1 \& \\
\hline 30. \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
Lucas Test: Lucas reagent is a mixture of conc. HCl and anhydrous \(\mathrm{ZnCl}_{2}\). Tertiary alcohols react with Lucas reagent to form immediate turbidity; secondary alcohols form turbidity within 5 minutes, while primary alcohols do not produce turbidity at room temperature. They give turbidity only on heating. \\
Reimer-Tiemann Reaction: When Phenol is treated with chloroform in the presence of sodium hydroxide, followed by acidification, we get Salicylaldehyde (ohydroxybenzaldehyde). \\
OR, \\
(i) \(\mathrm{CHCl}_{3}+\) aq. NaOH (ii) \(\mathrm{H}^{+}\) \\
Salicylaldehyde \\
Phenol
\end{tabular} \& \(11 / 2\)
\(11 / 2\)

1 \& 4 \\

\hline 31. \& | (i) |
| :--- |
| (ii) |
| (iii) | \& | $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{COOH}$ OR, 2-chloropropanoic acid OR, α-chloropropionic acid Cl |
| :--- |
| $\mathrm{CH}_{3}-\mathrm{CHCl}-\mathrm{COOH}$ is more acidic than $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}$. |
| By treating acetaldehyde (ethanal) with methyl magnesium bromide followed by hydrolysis, we get propan-2-ol. |
| OR, | \& 1

1
2 \& 4 \\
\hline
\end{tabular}

