DIRECTORATE OF GOVERNMENT EXAMINATION

HIGHER SECONDARY SECOND YEAR EXAMINATION - MARCH 2024

BIO – BOTANY ANSWER KEY

Note: 1. Answers written only in BLACK or BLUE should be evaluated

2. Choose the correct answer and written and write the option code with corresponding answer.

SECTION - A

Answer all the questions.

Maximum Marks:35

Q.	Option	А Туре	Q.	Option	В Туре
No			No.		
1	(b)	Dobson	1	(d)	400 – 700 nm
2	(d)	Dominant epistasis	2	(d)	(1)-(iv), (2)-(iii), (3)-(i), (4)-(ii)
3	(a)	10	3	(c)	Brazil
4	(d)	(A) is correct, (R) is wrong	4	(d)	Dominant epistasis
5	(d)	400 – 700 nm	5	(b)	Dobson
6	(d)	(1)-(iv), (2)-(iii), (3)-(i), (4)-(ii)	6	(d)	(A) is correct, (R) is wrong
7	(c)	Brazil	7	(c)	Confer resistance to antibiotics
8	(C)	Confer resistance to antibiotics	8	(a)	10

SECTION - B

Answer any Four questions.

4x2=8

Q. No	Answer	Marks	Total Marks
9	Names of the scientists – Rediscovered Mendelism		
	Hugo de Vries	(and the second	2
	Carl Correns	1+1	
	Erich von Tschermak (Any Tw	(0)	

10	Phytoremediation		
	The plants Rice and Eichhornia can be used to remove cadmium from contaminated soil, and this make suitable for cultivation is known as Phytoremediation. (or)		2
	Use of plants to bring about remediation of environmental pollutants		
11	 Enzymes – Required for Genetic engineering Restriction enzymes DNA ligase Alkaline phosphatase. (Any Two) 	1+1	2
12	Embryoids		
	 The callus cells undergoes differentiation and produces somatic embryos, known as Embryoids. (or) Somatic embryogenesis is the formation of embryos from the callus tissue directly and these embryos are called Embryoids		2
13	The pyramid of energy is always upright The bottom of the pyramid of energy is occupied by the producers. There is a gradual decrease in energy transfer at successive tropic levels from producers to the upper levels.		2
14	 Microbial inoculants – Soil fertility Efficient in fixing nitrogen solubilising phosphate Decomposing cellulose. They are designed to improve the soil fertility, plant growth Increase the number and biological activity of beneficial microorganisms in the soil. (Any Two) 		2

SECTION - C

Answer any three questions. Question No. 19 is compulsory.

3x3 =9

Q. No	Answer	Marks	Total Marks
15	 Genetic Map The diagrammatic representation of position of genes and related distances between the adjacent genes is called genetic mapping. Uses: It is used to determine gene order, identify the locus of a gene and calculate the distances between genes. It is useful in predicting results of dihybrid and trihybrid crosses. 	1	3
	It allows the geneticists to understand the overall genetic complexity of particular organism. (Any Two)	lexity	

16	Cryopreservation.				
	Cryopreservation (-196°C)				
	Cryopreservation also known as cryoconservation is a process by which				
	process by which protoplast, cells, tissues, organells, organs, Pollen				3
	grains extracellular matrix, enzyr	mes. Subjected to preservation	on by		
	cooking to very low temperature	of -196°C using liquid nitroge	n.		
17	Habitat and Niche				
	Habitat	Niche			
	A specific physical space	A functional space			
	occupied by an organism.	occupied by an organism		1	3
		in the same eco-system			
	Same habitat may be	A single niche is occupied		1	
	shared by many	by a single species			
	Organisms.			1	
	Habitat specificity is	Organisms may change	3		
	exhibited by organism.	their niche with time and			
		season		1.4	
18	Forest help – maintain the climate				
	 Increasing Rainfall and O₂ level. 				
	 Reducing CO₂ from atmosphere and increasing air quality. 				3
	 Reducing global warming and controlling climate changes. 				
	Increasing ozone level.				
	Increasing soil fertility.	(Any Three or Rela	ted Points)		
19	Structure of ovule				
	Diagram – 2				3
	1				

SECTION - 4

Answer all the questions.

Q. No	Answer	Marks	Total Marks
20	Single cell protein		
(a)	The dried cells of microorganisms that are used as protein supplement in		
	human foods or animal feeds are called Single cell proteins.		
	Applications of Single-Cell Protein		5
	 It is used as protein supplement. 		
	 It is used in cosmetics products for healthy hair and skin. 	4×1	
1	 It is used as the excellent source of proteins for feeding cattle, birds, fishes etc. 	. •	
	 It is used in industries like paper processing, leather processing as foam stabilizers. 		
	 It is used in food industry as aroma carriers, vitamin carrier, emulsifying agents to improve the nutritive value of baked products, in 		
	soups, in ready-to-serve-meals, in diet recipes. (Any Four)	- 1	
20	Millets		
(b)	Definition	2	5
	 Types and Examples 	3	
21	Inheritance of chloroplast		
(a)	Examples	1	
	Explanation	2	5
	• Diagram	2	
21	Steps involved in microsporogenesis	1	*
(b)	Steps	4	5
	• Diagram	1	