

Reg. No. :

Name :

SECOND YEAR HIGHER SECONDARY EXAMINATION, MARCH – 2024

Part – III

STATISTICS

Time : 2 Hours Cool-off time : 15 Minutes

Maximum : 60 Scores

General Instructions to Candidates :

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' ചോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദൃങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

	Answer any 6 questions from 1 to 7.	Each carries	5 1 score. $(6 \times 1 = 6)$
1.	The maximum value of coefficient of o	correlation is	
	(a) 0	(b)	1
	(c) -1	(d)	2
2.	The time taken by a student to reach th	ne school is an	example of variable.
	(a) qualitative	(b)	discrete
	(c) continuous	(d)	normal
3.	The ratio of two independent chi-squar	re variables is	
	(a) Normal	(b)	t-statistic
	(c) Chi-square statistic	(d)	F-statistic
4.	An estimator, t is said to be an unbiase	ed estimator fo	or the parameter ' θ ' if $E(t) = $
	(a) θ	(b)	0
	(c) 1	(d)	t
5.	1 – p (type II Error) =		
	(a) α	(b)	β
	(c) Power of a test	(d)	Level of significance
6.	The test statistic used in ANOVA is		
	(a) z	(b)	t
	(c) χ^2	(d)	F
7.	The sale of cotton clothes in summers	er is associat	ed with component of time
	(a) Secular trend	(b)	Seasonal variation
	(c) Cyclical variation	(d)	Irregular variation
8.	Answer any 10 questions from 8 to 1 Write a short note on positive correlation	9. Each carr on and negati	ies 2 scores. $(10 \times 2 = 20)$ ve correlation between variables.
9.	In a regression analysis the following $b_{yx} = 0.23, r = 0.45, \sigma_x = 10$	results are obt	ained :
	$\Gamma'_{1} 1_{$		

Find the standard deviation of y.

10. Find the derivative of the following function : $y = x^2 + 3x + 4$

SY-532

	1 മുതൽ 7 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏരെ	ങ്കിലു	ും 6 എണ്ണത്തിന് ഉത്തരമെഴുതുക.
	1 സ്കോർ വീതം.		$(6 \times 1 = 6)$
1.	കോറിലേഷൻ കൊയഫിഷന്റിന്റെ ഏറ്റവും കൂ	ടിയ വ	ില ആകുന്നു.
	(a) 0	(b)	1
	(c) -1	(d)	2
2.	ഒരു കുട്ടി സ്കൂളിൽ എത്താൻ എടുക്കുന്ന സം മാണ്.	മയം _	വേരിയബിളിന് ഉദാഹരണ
	(a) ക്വാളിറ്റേറ്റീവ്	(b)	ഡിസ്പ്രീറ്റ്
	(c) കണ്ടിന്യൂസ്	(d)	നോർമൽ
3	രണ്ട് ബൻഡിപെൻഡൻ കൈ ഡിയർ പരങ്ങള	ടെ അ	സപാതം പരം അകാന്നാ
5.	(a) നോർമൽ	(h)	t-സാറിസിക്
	(a) $(a) = a + a + a + a + a + a + a + a + a + a$	(d)	$F_{\rm c}$
		(u)	148281481@
4.	t എന്ന ഒരു ഗണകത്തെ θ എന്ന പരാ	മീറ്ററിം ഞം	ന്റെ നിഷ്പക്ഷഗണകമാണ് എന്ന്
	$\frac{1}{2} = 0$	(h)	0
	$(a) \theta$	(0)	t
		(u)	t
5.	1 – p (തരം II പിശക്) =		
	(a) α	(b)	β
	(c) പരീക്ഷണ ക്ഷമത	(d)	സാർഥകതലം
6.	അനോവയിൽ ഉപയോഗിച്ചിരിക്കുന്ന പരീക്ഷം	ന്ന സാ	രാഖൃജം ആണ്.
	(a) z	(b)	t
	(c) χ^2	(d)	F
7.	വേനൽക്കാലത്തെ പരുത്തിതുണികളുടെ ഘടകവുമായി ബന്ധപ്പെട്ടിരിക്കുന്നു.	വില്പറ	ന സമയശ്രേണിയുടെ
	(a) ദീർഘകാല ചലനം	(b)	ഹ്രസ്വകാല ചലനം
	(c) ചാക്രിക ചലനം	(d)	ക്രമരഹിതവൃതിയാനം
	8 മുതൽ 19 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെ 2 സ്കോർ വീതം.	ങ്കിലു	്രം 10 എണ്ണത്തിന് ഉത്തരമെഴുതുക. (10 × 2 = 20)
8.	പോസിറ്റീവ് കോറിലേഷൻ നെഗറ്റീവ് േ ലഘുകുറിപ്പ് തയ്യാറാക്കുക.	കാറിര	ലേഷൻ എന്നിവയെക്കുറിച്ച് ഒരു
9.	ഒരു സമാശ്രയപഠനത്തിൽ നിന്നും ലഭിച്ച വിവ b _{yx} = 0.23, r = 0.45, σ _x = 10 'y' യുടെ മാനകവ്യതിയാനം കണ്ടുപിടിക്കുക.	രങ്ങൾ	ർ താഴെ നൽകുന്നു.
10.	താഴെതന്നിരിക്കുന്ന ഏകദത്തിന്റെ അവകലന ഗ – r ² + 3r + 4	മൂല്യം	ം കണ്ടുപിടിക്കുക.

 $y = x^2 + 3x + 4$

SY-532

11. Evaluate the following definite integral :

$$\int_{0}^{1} x^2 \, \mathrm{d}x.$$

- 12. A fair coin is tossed 16 times. Find the mean and variance of the number of heads obtained.
- 13. Write down any 4 properties of normal curve.
- 14. If a sample of size 2 is taken from the population 2, 3, 5 without replacement, find the mean of the sample means.
- 15. Name the four properties of a good estimator.
- 16. Distinguish between assignable causes and chance causes of variation in ANOVA.
- 17. Control charts for X̄ and R charts are maintained on the tensile strength in kg of a certain yarn. The subgroup size is 5. The values of X̄ and R are computed for each subgroup. Sum of Average of 25 subgroup is ΣX̄ = 514.8, ΣR = 120. Compute control limits for X̄ chart. [Hint : A₂ = 0.577]
- 18. What are the components of a time series ?

19.	From the following	data	construct	Simple	Aggregate	index	number	for	2014	taking
	2011 as the base :									

Commodities	Price in 2014	Price in 2011
Rice	32	28
Oil	88	75
Sugar	40	35
Wheat	22	18

11. താഴെതന്നിരിക്കുന്ന നിശ്ചിതസമാകലനം കണ്ടുപിടിക്കുക.

$$\int_{0}^{1} x^2 \, \mathrm{d}x.$$

- 12. ഒരു നാണയം 16 തവണ കറക്കുന്നു. കിട്ടുന്ന തലകളുടെ എണ്ണത്തിന്റെ മാധ്യവും വൃതിയാനവും കാണുക.
- 13. നോർമൽ വക്രത്തിന്റെ ഏതെങ്കിലും 4 സവിശേഷതകൾ എഴുതുക.
- 14. 2, 3, 5 എന്ന സമഷ്ടിയിൽ നിന്നും തിരികെ വെക്കാത്ത രീതിയിൽ ക്രമരഹിത പ്രതിരൂപണത്തിലുടെ സാമ്പിൾ എടുത്തു. സമഷ്ടിയുടെ മാധ്യത്തിന്റെ മാധ്യംകാണുക.
- 15. ഒരു മികച്ച ഗണകത്തിന്റെ 4 ഗുണങ്ങൾ എഴുതുക.
- അനോവയിലെ നിയുക്ത കാരണങ്ങൾ, യാദൃശ്ചിക കാരണങ്ങൾ എന്നിവ തമ്മിലുള്ള വൃത്യാസം എഴുതുക.
- 17. ഒരു ചരടിന്റെ ബലം പരിശോധിക്കുന്നതിനായുള്ള നിയന്ത്രണ ചാർട്ടുകൾ ഉണ്ടാക്കി. ഉപഗ്രൂപ്പിന്റെ വലുപ്പും 5 ആകുന്നു. \overline{X} ന്റെ യും R ന്റെ യും വിലകൾ ഓരോഗ്രൂപ്പിലും കണക്കാക്കി. 25 ഉപഗ്രൂപ്പുകളുടെ $\Sigma \overline{X} = 514.8$, $\Sigma R = 120$. \overline{X} ചാർട്ടിന്റെ നിയന്ത്രണ പരിധികൾ കണക്കാക്കുക. [സൂചന: $A_2 = 0.577$]
- 18. സമയശ്രേണിയിലെ ഘടകങ്ങൾ ഏതൊക്കെയാണ് ?
- 19. താഴെ തന്നിരിക്കുന്ന ഡാറ്റ ഉപയോഗിച്ച് 2011 നെ ആസ്പദമാക്കിയുള്ള 2014 ലെ വില സൂചികാങ്കം കാണുക.

സാധനങ്ങൾ	2014 ലെ വില	2011 ലെ വില
അരി	32	28
എണ്ണ	88	75
പഞ്ചസാര	40	35
ഗോതമ്പ്	22	18

Answer any 6 questions from 20 to 27. Each carries 4 scores. $(6 \times 4 = 24)$

20. The following data relate to time spent for exercising daily in minutes (X) and blood pressure (Y) of a group of patients :

	Χ	Y
Mean	60	100
Standard deviation	20	15
r = -0.81		

- (a) Find the regression line of Y on X.
- (b) Calculate the blood pressure of a person who exercised 70 minutes daily. (3 + 1)
- 21. A random variable X has the following probability distribution :

	X	Κ	-1	0	1
	P(2	X)	0.4	0.3	0.3
Determine	(a)	E(2	X)		
	(b)	V(X)		

22. For a variable X following Poisson distribution with $\lambda = 0.1$, calculate

(1)	P(X=2)	
(2)	P(X is atleast 2)	(1+3)

- 23. In an examination, 600 students have appeared for a paper in Economics. Their average mark is normally distributed with Mean = 40 and Standard Deviation = 10. Find the approximate number of students who get marks between 30 and 50.
- 24. Explain the concept of statistic and parameter with an example each.
- 25. The mean weight of a sample of 100 students is 52 kgs. with standard deviation 3 kgs. Can it be considered as a sample taken from a normal population having mean greater than 50 kgs. at 1% level of significance. ($Z\alpha = 2.33$)
- 26. The incomplete ANOVA table of a study is given below, complete the fields and interpret the result.

Source	df	Sum of squares	Mean sum of squares	F
Between samples	5	_	12	I
Within samples		76	_	
Total	24	_		

$$F_{0.01} = 4.17$$

20 മുതൽ 27 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 6 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 4 സോർ വീതം. (6 × 4 = 24)

20. ഒരു കൂട്ടം രോഗികളുടെ പ്രതിദിന വ്യായാമസമയവും (X) (മിനുട്ടിൽ), രക്തസമ്മർദ്ദവു (Y) മായി ബന്ധപ്പെട്ട ഡാറ്റയാണ് തന്നിരിക്കുന്നത്.

	X	Y
മാധ്യം	60	100
മാനക വൃതിയാനം	20	15
0.01		

r = -0.81

- (a) Y നുമേൽ X ന്റെ സമാശ്രയസമവാകൃംകാണുക.
- (b) ദിവസേന 70 മിനുട്ട് വ്യായാമം ചെയ്യുന്ന ഒരു വൃക്തിയുടെരക്തസമ്മർദം എത്രയെന്ന് കണക്കാക്കുക. (3 + 1)
- 21. X എന്ന അനിയത ചരത്തിന്റെ സംഭാവൃതാ വിതരണം താഴെതന്നിരിക്കുന്നു.

Х	-1	0	1
P(X)	0.4	0.3	0.3

(a) E(X)

(b) V(X)

ഇവ കാണുക.

- 22. ഒരു വേരിയബിൾ X ന്റെ പോയ്സോൺ വിതരണത്തിന്റെ $\lambda=0.1$ ആണ്.
 - (1) P(X = 2)
 - (2) P(X കുറഞ്ഞത് 2 ആണ്) ഇവ കണ്ടുപിടിക്കുക.
- 23. ഒരു സാമ്പത്തികശാസ്ത്ര പരീക്ഷയിൽ 600 കുട്ടികൾ പങ്കെടുത്തു. അവരുടെ ശരാശരിമാർക്ക് നോർമൽ വിതരണം പിൻതുടരുന്നു. അതിന്റെ മാധ്യം = 40, മാനകവൃതിയാനം = 10 ആകുന്നു. 30 മാർക്കിനും 50 മാർക്കിനും ഇടയിൽ കിട്ടിയ കുട്ടികളുടെ എണ്ണം കണ്ടുപിടിക്കുക.
- 24. പരാമീറ്റർ, സ്റ്റാറ്റിസ്റ്റിക് എന്നിവ ഉദാഹരണ സഹിതം വിശദമാക്കുക.
- 25. 100 കുട്ടികളുള്ള ഒരു സാമ്പിളിന്റെ ഭാരത്തിന്റെ മാധ്യം 52 കിലോഗ്രാമും മാനക വൃതിയാനം 3 കി. ഗ്രാമും ആണ്. ഈ സാമ്പിൾ മാധ്യം 50 കി.ഗ്രാമിൽ കൂടുതലുള്ള ഒരു നോർമൽ സമഷ്ടിയിൽ നിന്നും എടുത്തതാണെന്ന് കരുതാൻ 1% സാർഥക തലത്തിൽ കഴിയുമോ എന്ന് പരിശോധിക്കുക. (Zα = 2.33)
- 26. ഒരു പഠനത്തിൽ ലഭിച്ച വിവരങ്ങളുടെ അപൂർണമായ അനോവ പട്ടിക ചുവടെ തന്നിരിക്കുന്നു. വിട്ടഭാഗങ്ങൾ പൂർത്തീകരിച്ച് നിങ്ങളുടെ നിഗമനം എഴുതുക.

ഉറവിടം	df	വർഗങ്ങളുടെ	വർഗങ്ങളുടെ	F
		തുക	തുകയുടെ ശരാശരി	
സാമ്പിളുകൾക്കിടയിലുള്ളത്	5	_	12	_
സാമ്പിളുകൾക്ക് അകത്തുള്ളത്	-	76	_	
ആകെ	24	_		

$$F_{0.01} = 4.17$$

(1+3)

(1+3)

27. The following data shows the values of range (R) for ten samples of size 5 each. Calculate the values for central line and control limits for range chart. Also draw the control chart and determine whether the process is under control. $[D_3 = 0, D_4 = 2.115]$

Sample No.	Range (R)
1	7
2	4
3	8
4	5
5	7
6	4
7	8
8	4
9	7
10	9

Answer any 2 questions from 28 to 30. Each carries 5 scores.

 $(2 \times 5 = 10)$

28. Calculate the Karl Pearson's coefficient of correlation for the following :

							1 0 100 110			
Х	5	10	5	11	12	4	3	2	7	1
Y	1	6	2	8	5	1	4	6	5	2

Also comment on the result.

- 29. (a) A time series is a set of data recorded _____.
 - (i) Geographically
 - (ii) Chronologically
 - (iii) Both geographically and chronologically
 - (iv) None of these
 - (b) The following data relate to the sale of mobile phones from a shop in the city from 2005 to 2012. Calculate the trend values by 4 yearly moving average.

								-
Year	2005	2006	2007	2008	2009	2010	2011	2012
Sales	128	265	341	412	485	531	578	620

30. Using the following data calculate :

- (a) Laspeyre's Index Number
- (b) Paasche's Index Number
- (c) Fisher's Index Number

Commodities	Bas	se Year	Current Year			
	Price	Quantity	Price	Quantity		
А	9.25	5	15	5		
В	8	10	12	11		
С	4	6	5	6		
D	1	4	1.25	8		

27. 5 എണ്ണം വീതമുള്ള 10 സാമ്പിളുകളുള്ള ഒരു ഡാറ്റയുടെ വിലകളാണ് ചുവടെ തന്നിരിക്കുന്നത്. റേഞ്ചിന്റെ മധ്യരേഖയും നിയന്ത്രണപരിധികളും കണക്കാക്കുക. നിയന്ത്രണ ചാർട്ട് വർച്ച് പ്രക്രിയ നിയന്ത്രണത്തിലാണോ എന്ന് പരിശോധിക്കുക.

$[D_3 = 0, 1]$	$D_4 = 2.115$]	
	സാമ്പിൾ നമ്പർ	റേഞ്ച്
	1	7
	2	4
	3	8
	4	5
	5	7
	6	4
	7	8
	8	4
	9	7
	10	9

28 മുതൽ 30 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 5 സ്കോർ വീതം. (2 × 5 = 10)

28. താഴെ തന്നിരിക്കുന്ന ഡാറ്റയുടെ കാൾ പിയേഴ്സൺ കോറിലേഷൻ കൊയഫിഷന്റ് കണ്ടുപിടിക്കുക. ഫലം വിശകലനം ചെയ്യുക.

X	5	10	5	11	12	4	3	2	7	1
Y	1	6	2	8	5	1	4	6	5	2

- 29. (a) സമയശ്രേണി എന്നത് _____ രേഖപ്പെടുത്തിയ ഡാറ്റകളുടെ കൂട്ടമാണ്.
 - (i) ഭൂമിശാസ്ത്രപരം
 - (ii) കാലാനുസ്യതം
 - (iii) ഭൂമിശാസ്ത്രപര മായും കാലാനുസ്യതമായും
 - (iv) ഇതൊന്നുമല്ല
 - (b) നഗരത്തിലെ ഒരു കടയിൽ 2005 മുതൽ 2012 വരെ മൊബൈൽ ഫോണുകളുടെ വില്പനയുമായി ബന്ധപ്പെട്ട ഡാറ്റ താഴെ തന്നിരിക്കുനു. 4 വർഷ ചലന ശരാശരി പ്രകാരം പ്രവണതാമൂല്യങ്ങൾ കണക്കാക്കുക.

•		0 0		,	5				
Year	2005	2006	2007	2008	2009	2010	2011	2012	
Sales	128	265	341	412	485	531	578	620	(1 + 4

- 30. താഴെ തന്നിരിക്കുന്ന ഡാറ്റ ഉപയോഗിച്ച്
 - (a) ലാസ്പെയർ ഇൻഡക്സ് നമ്പർ
 - (b) പാഷേ ഇൻഡക്സ് നമ്പർ
 - (c) ഫിഷർ ഇൻഡക്സ് നമ്പർ

എന്നിവ കണ്ടുപിടിക്കുക.

Commodities	Bas	se Year	Current Year			
	Price	Quantity	Price	Quantity		
A	9.25	5	15	5		
В	8	10	12	11		
С	4	6	5	6		
D	1	4	1.25	8		

9

Statistical Tables

Stan	idard N	ormal	Table						-	0 Z
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998
3.5	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998
3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.7	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.8	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.9	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
4.0	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000