Reg. No. : \qquad
Name : \qquad

SECOND YEAR HIGHER SECONDARY EXAMINATION, MARCH - 2024

Part - III
STATISTICS
Maximum : 60 Scores

General Instructions to Candidates:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

 உைைமிமிஆளைை.

Answer any 6 questions from 1 to 7. Each carries 1 score.

1. The maximum value of coefficient of correlation is
(a) 0
(b) 1
(c) -1
(d) 2
2. The time taken by a student to reach the school is an example of \qquad variable.
(a) qualitative
(b) discrete
(c) continuous
(d) normal
3. The ratio of two independent chi-square variables is \qquad .
(a) Normal
(b) t-statistic
(c) Chi-square statistic
(d) F-statistic
4. An estimator, t is said to be an unbiased estimator for the parameter ' θ ' if $E(t)=$ \qquad .
(a) θ
(b) 0
(c) 1
(d) t
5. $\quad 1-\mathrm{p}($ type II Error $)=$ \qquad .
(a) α
(b) β
(c) Power of a test
(d) Level of significance
6. The test statistic used in ANOVA is \qquad .
(a) z
(b) t
(c) χ^{2}
(d) F
7. The sale of cotton clothes in summer is associated with \qquad component of time series.
(a) Secular trend
(b) Seasonal variation
(c) Cyclical variation
(d) Irregular variation

Answer any 10 questions from 8 to 19. Each carries 2 scores.
8. Write a short note on positive correlation and negative correlation between variables.
9. In a regression analysis the following results are obtained :

$$
\mathrm{b}_{\mathrm{y} x}=0.23, \mathrm{r}=0.45, \quad \sigma_{x}=10
$$

Find the standard deviation of y.
10. Find the derivative of the following function :

$$
y=x^{2}+3 x+4
$$

$(6 \times 1=6)$
 \qquad

（a） 0
（b） 1
（c）-1
（d） 2
 \qquad வேカியறிலிா உக்ஃกே வงஸ゙．
（a）கைフロிடロถிவூ
（b）wl（พุ

（d）ตேวฉิอ๐
 \qquad

（a）ாேงฉิอณை
（b）t－గ్నত్రীగ్గிゃ

 வกめளிைெிிஜ் $\mathrm{E}(\mathrm{t})=$ \qquad （ேூயிகிெஸை๐．
（a）θ
（b） 0
（c） 1
（d） t
 \qquad ．
（a）α
（b）β
（c）வரிகஅツ கษロー
（d）గัชิமகைைை
 \qquad ®ேஸ゙．
（a） z
（b） t
（c）χ^{2}
（d） F
 \qquad

（c）ปつがめ エリリー

 2 セサை
$(10 \times 2=20)$

$$
\mathrm{b}_{\mathrm{y} x}=0.23, \mathrm{r}=0.45, \quad \sigma_{x}=10
$$

$$
y=x^{2}+3 x+4
$$

11. Evaluate the following definite integral :

$$
\int_{0}^{1} x^{2} \mathrm{~d} x
$$

12. A fair coin is tossed 16 times. Find the mean and variance of the number of heads obtained.
13. Write down any 4 properties of normal curve.
14. If a sample of size 2 is taken from the population $2,3,5$ without replacement, find the mean of the sample means.
15. Name the four properties of a good estimator.
16. Distinguish between assignable causes and chance causes of variation in ANOVA.
17. Control charts for \bar{X} and R charts are maintained on the tensile strength in kg of a certain yarn. The subgroup size is 5 . The values of \bar{X} and R are computed for each subgroup. Sum of Average of 25 subgroup is $\Sigma \overline{\mathrm{X}}=514.8, \Sigma \mathrm{R}=120$. Compute control limits for $\overline{\mathrm{X}}$ chart. [Hint : $\mathrm{A}_{2}=0.577$]
18. What are the components of a time series ?
19. From the following data construct Simple Aggregate index number for 2014 taking 2011 as the base :

Commodities	Price in 2014	Price in 2011
Rice	32	28
Oil	88	75
Sugar	40	35
Wheat	22	18

$$
\int_{0}^{1} x^{2} \mathrm{~d} x
$$

 வృமைఱノறவృం カ๐ஸృக．

	2014 ¢e விe	2011 ¢e வile
ชฺ๐01	32	28
๑円冂	88	75
வツைos	40	35
¢๐วハை	22	18

Answer any 6 questions from 20 to 27. Each carries 4 scores.
20. The following data relate to time spent for exercising daily in minutes (X) and blood pressure (Y) of a group of patients :

	\mathbf{X}	\mathbf{Y}
Mean	60	100
Standard deviation	20	15

$$
\mathrm{r}=-0.81
$$

(a) Find the regression line of Y on X.
(b) Calculate the blood pressure of a person who exercised 70 minutes daily. (3+1)
21. A random variable X has the following probability distribution :

X	-1	0	1
$\mathrm{P}(\mathrm{X})$	0.4	0.3	0.3

Determine (a) $E(X)$
(b) $\quad \mathrm{V}(\mathrm{X})$
22. For a variable X following Poisson distribution with $\lambda=0.1$, calculate
(1) $\mathrm{P}(\mathrm{X}=2)$
(2) $\mathrm{P}(\mathrm{X}$ is atleast 2$)$
23. In an examination, 600 students have appeared for a paper in Economics. Their average mark is normally distributed with Mean $=40$ and Standard Deviation $=10$. Find the approximate number of students who get marks between 30 and 50 .
24. Explain the concept of statistic and parameter with an example each.
25. The mean weight of a sample of 100 students is 52 kgs . with standard deviation 3 kgs . Can it be considered as a sample taken from a normal population having mean greater than 50 kgs . at 1% level of significance. $(\mathrm{Z} \alpha=2.33)$
26. The incomplete ANOVA table of a study is given below, complete the fields and interpret the result.

Source	df	Sum of squares	Mean sum of squares	F
Between samples	5	-	12	-
Within samples	-	76	-	
Total	24	-		

$$
\mathrm{F}_{0.01}=4.17
$$

 4 ๙ேைరె నiఁை．

	X	Y
®00ృ」	60	100
	20	15

$$
\mathrm{r}=-0.81
$$

X	-1	0	1
$\mathrm{P}(\mathrm{X})$	0.4	0.3	0.3

（a） $\mathrm{E}(\mathrm{X})$
（b） $\mathrm{V}(\mathrm{X})$
றவ கைஸுகை．

（1） $\mathrm{P}(\mathrm{X}=2)$

உ๐விS	df	வனిのறலூபூ ढృக	நைகய゙ロ	F
	5	－	12	－
	－	76	－	
（ேூ）	24	－		

$$
\mathrm{F}_{0.01}=4.17
$$

27. The following data shows the values of range (R) for ten samples of size 5 each. Calculate the values for central line and control limits for range chart. Also draw the control chart and determine whether the process is under control. [$\mathrm{D}_{3}=0, \mathrm{D}_{4}=2.115$]

Sample No.	Range (R)
1	7
2	4
3	8
4	5
5	7
6	4
7	8
8	4
9	7
10	9

Answer any 2 questions from 28 to 30. Each carries 5 scores.
28. Calculate the Karl Pearson's coefficient of correlation for the following :

X	5	10	5	11	12	4	3	2	7	1
Y	1	6	2	8	5	1	4	6	5	2

Also comment on the result.
29. (a) A time series is a set of data recorded \qquad .
(i) Geographically
(ii) Chronologically
(iii) Both geographically and chronologically
(iv) None of these
(b) The following data relate to the sale of mobile phones from a shop in the city from 2005 to 2012. Calculate the trend values by 4 yearly moving average.

Year	2005	2006	2007	2008	2009	2010	2011	2012
Sales	128	265	341	412	485	531	578	620

30. Using the following data calculate :
(a) Laspeyre's Index Number
(b) Paasche's Index Number
(c) Fisher's Index Number

Commodities	Base Year		Current Year	
	Price	Quantity	Price	Quantity
A	9.25	5	15	5
B	8	10	12	11
C	4	6	5	6
D	1	4	1.25	8

 $\left[\mathrm{D}_{3}=0, \mathrm{D}_{4}=2.115\right]$

momiuô mmia	¢กற91
1	7
2	4
3	8
4	5
5	7
6	4
7	8
8	4
9	7
10	9

X	5	10	5	11	12	4	3	2	7	1
Y	1	6	2	8	5	1	4	6	5	2

 \qquad

(iv) றのைைmృa잉

Year	2005	2006	2007	2008	2009	2010	2011	2012
Sales	128	265	341	412	485	531	578	620

Commodities	Base Year		Current Year	
	Price	Quantity	Price	Quantity
A	9.25	5	15	5
B	8	10	12	11
C	4	6	5	6
D	1	4	1.25	8

Statistical Tables

Standard Normal Table

2	0.00	. 01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.	0.2257	0.2291	0.2324	0.235	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.299	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.318	0.3212	0.3238	0.32	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.366	0.3686	0.370	0.37	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.420	0.4222	0.423	0.42	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.456	0.4573	0.458	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.471	0.4726	0.473	0.473	0.4744	0.4750	0.47	0.4761	0.4767
2.0	0.4772	0.477	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.486	0.4868	0.487	0.48	0.4878	0.4881	0.488	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998
3.5	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998
3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.7	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.8	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.9	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
4.0	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000

