HSE-II HIGHER SECONDARY FIRST TERMINAL EVALUATION, AUG-2023						
Part-III, PHYSICS						
Q.No	ANSWER KEY Value points	Score	Total			
	1 to 7 5x1=5					
1.	c	1	1			
2.	b	1	1			
3.	Zero	1	1			
4.	F or farad	1	1			
5.	с	1	1			
6.	a	1	1			
7.	increases	1	1			
	8 to 14 5 x2=10]				
8.	a) 3 b) 4 c) 2 d) 1	1/2 1/2 1/2 1/2 1/2	2			
9.	Figure Gauss's law Derivation Final equation	$\frac{1/2}{1/2}$ $\frac{1/2}{1/2}$ $\frac{1/2}{1/2}$	2			
10.	Figure a) b)	1 1	2			
11.	Derivation Final equation /Electric field is the negative gradient of electric potential	2 1	2			
12.	Equation C= $4\pi\epsilon_0 R$ 711 μF	1 1	2			
13.	Rα l, Rα 1/A, temperature (any two factors) Equation	1	2			
14.	Statement Equation	1 1	2			
	15 to 21 6x3=1	8				
15.	 a) n=q/e = 1.9 x 10¹², Wool to polythene. b) Yes, there is a transfer of mass. 	2 1	3			

MINAL	16.	a) Statement of Coulomb's law $\vec{F} = K \frac{q_1 q_2}{r_{12}^2} \widehat{r_{12}}$	1	3
core Total		b) Coulomb force between two charges does not depend on the presence of third charge.	1	
1	17.	a) 9 pF b) $Q_1=C_1V=2x10^{-12}x100=2x10^{-10}C$ $Q_2=C_2V=3x10^{-12}x100=3x10^{-10}C$ $Q_3=C_3V=4x10^{-12}x100=4x10^{-10}C$	1 2	3
1 1	18.	a) Any two properties b)	2	3
1	19.	Definition of Drift velocity. Derivation of $I = n e A v_d$	1 2	3
1	20.	a) Statement of Ohm's lawb) Two Limitations of Ohm's law	1 2	3
	21	Derivation of $\tau = \mathbf{m} \mathbf{x} \mathbf{B}$	3	3
2		22 to 25 3 x 4= 12	I	
2	22.	 a. Electric Dipole b. Definition of Dipole moment/ Equation(p=2aq) Direction (Negative to Positive) c. Derivation of τ =p x E figure only ½ score final equation only ½ score 	1 1/2 1/2 2	4
2				
2	23.	 a. Correct definition b. Explanation based on Polarisation and reduction of net electric field c. 	1 2	4
	23.	a. Correct definitionb. Explanation based on Polarisation and reduction of		4
2	23.	a. Correct definition b. Explanation based on Polarisation and reduction of net electric field c. $C = \frac{K\varepsilon_0 A}{d}$ a. Definition of Temperature Coefficient of resistivity/ Equation	2	4
2		a. Correct definition b. Explanation based on Polarisation and reduction of net electric field c. $C = \frac{K\varepsilon_0 A}{d}$ a. Definition of Temperature Coefficient of resistivity/	2	
2 2 2 2		a. Correct definition b. Explanation based on Polarisation and reduction of net electric field c. $C = \frac{K \varepsilon_0 A}{d}$ a. Definition of Temperature Coefficient of resistivity/ Equation b. K ⁻¹ c. Increases/ α is positive	2 1 1 1	

	Substitution Final answer R= 5988 Ω Final answer only 1 score	1/2 1/2	
	26 to 29 3x 5=15		
26.	(i) Figure $ \oint_{S} \vec{E} \cdot \vec{dS} = \frac{q}{\varepsilon_{0}} $ $ E = \frac{1}{4\pi\varepsilon_{0}} \frac{q}{r^{2}} \text{ or } $ $ E = \frac{\sigma}{\varepsilon_{0}} \frac{R^{2}}{r^{2}} $	1 1 1	5
27	(ii) $E = \frac{1}{4\pi\varepsilon_0} \frac{q}{R^2}$ or $E = \frac{\sigma}{\varepsilon_0}$ (iii) $E = 0$	1	
21.	(a) Figure $V = V_{+q} + V_{-q}$ $\therefore v = \frac{q}{4\pi\varepsilon_0} \left[\frac{1}{r - a\cos\theta} - \frac{1}{r + a\cos\theta} \right]$ $V = \frac{1}{4\pi\varepsilon_0} \frac{p\cos\theta}{(r^2 - a^2\cos^2\theta)}$	1 1⁄2 1⁄2	
	or $V = \frac{1}{4\pi\varepsilon_0} \frac{p \cos \theta}{r^2}$		5
	(b) $ \begin{array}{c} \circ & P & A \\ \bullet & -x & \bullet \\ 3 \times 10^{+} \text{ c} & 15 \text{ cm} & -2 \times 10^{+} \text{ c} \\ \end{array} $ $ \frac{1}{4\pi\varepsilon_{0}} \left[\frac{3 \times 10^{-8}}{x \times 10^{-2}} - \frac{2 \times 10^{-8}}{(15 - x) \times 10^{-2}} \right] = 0 $	1 1⁄2	
	Electric potential is zero at 9 cm and 45 cm away from the positive charge on the side of the negative charge.	1⁄2 1	
28.	 (a) Statements of two laws or Σ I = 0 Σ IR = Σ E (b) Figure Derivation or Final equation only 	1 + 1 $\frac{1}{2}$ $\frac{1}{2}$ 1 1	5
29.	(a) Statement / Equation (b) Figure Derivation or	1 1 2	

Final answer onl	5	
(c) Coiled wires hav field mainly along th compared to that jus	ne axis	5
But straight wires ha field around it which the smooth function sensitive equipment with it.	ave magnetic a will affect ing of 1/2	

Answer key Prepared by HSPTA Malappuram