SECOND YEAR HIGHER SECONDARY FIRST TERM EXAMINATION AUGUST 2023 CHEMISTRY - ANSWER KEY

Qn. No.	Sub Qns	Answer Key/Value Points	Scor e	Total	
Answer any 4 questions from 1 to 5. Each carry 1 score					
1.		(b) Molality	1	1	
2.		96487 C mol ^{–1} OR, 96500 C mol ^{–1} OR, 1 Faraday	1	1	
3.		mol L ⁻¹ s ⁻¹ OR M s ⁻¹ OR atm s ⁻¹	1	1	
4.		(b) Kohlrausch law	1	1	
5.		Scandium (Sc)	1	1	
	1	Answer any 8 questions from 6 to 15. Each carry 2 score	1	r	
6.		Primary cell cannot be recharged or reused, while secondary cell can be recharged and reused. In primary cell, the cell reaction cannot be reversed but in secondary cell, the cell reaction can be reversed. [Any one difference is required] Example for primary cell: Dry cell, mercury cell (button cell) etc.	1	2	
		Example for secondary cell: Lead storage cell, Ni-Cd cell (Nicad cell), Lithium ion cell etc. [Any one example for each cell is required]	1		
7.		This is because the fluid inside our blood cell is isotonic with 0.9% (mass/volume) NaCl solution. So osmosis does not occur if we place the blood cells in this solution. OR, If the blood cells are placed in NaCl solution with higher or lower concentrations than 0.9 %, they would shrink or swell.	2	2	
8.	a) b)	The rate equation (rate law) is $r = k[A]^2$ Let the initial concentration of A be y. Then the rate law for this reaction is $r = k y^2$ When the concentration of A is increased to three times, the final concentration becomes 3y. Now the rate law is $r_1 = k(3y)^2 = 9ky^2$ So $r_1 = 9 x r$ i.e. the rate formation of B is <i>increased by 9 times</i> .	1	2	
9.		We know that $\Delta T_f = \frac{1000 \text{ K}_f \cdot \text{w}_2}{\text{w}_1 \cdot \text{M}_2}$ Here w ₂ = 0.4 g, w ₁ = 20g, ΔT_f = 0.75 K, K _f = 5.12 K kg/mol, M ₂ = ? On substituting in the above equation, we get $0.75 = \frac{1000 \text{ x } 5.12 \text{ x } 0.4}{20 \text{ x } \text{M}_2}$ So, M ₂ = $\frac{1000 \text{ x } 5.12 \text{ x } 0.4}{20 \text{ x } 0.75}$	1	2	

10.		$\begin{bmatrix} 0 \\ -Cr \\ 0 \\ 0 \\ 0 \end{bmatrix}^{2-} \begin{bmatrix} 0 \\ 0 \\ -Cr \\ -126' \\$	2 x 1	2	
11.		For a first order reaction, $k = \frac{2.303}{t} \log[R]_0$ When $t = t_{1/2}$, $[R] = [R]_0/2$ Substitute these values in the above equation $k = \frac{2.303}{t_{1/2}} \log[R]_0$ $\frac{t_{1/2}}{[R]_0/2}$ Or, $t_{1/2} = \frac{2.303}{k} \log 2 = \frac{2.303 \times 0.3010}{k}$ Or, $t_{1/2} = 0.693$	1	2	
		k Thus for a first order reaction, half-life period is independent of initial concentration of the reacting species.			
12.		When a pressure larger than osmotic pressure is applied to the solution side, the direction of osmosis gets reversed (i.e. now the pure solvent flows out of the solution through the semi permeable membrane). This phenomenon is called reverse osmosis.	1	2	
		Application: Desalination of sea water OR, Purification of water.	1		
13.		Transition elements act as catalyst due to their: (i) large surface area (ii) ability to form complexes (iii) ability to show variable oxidation state. [Any 2 required]	2 x 1	2	
14.		Given $\Lambda^{0}m_{(NaCl)} = 126.4 \text{ S cm}^{2}\text{mol}^{-1}$, $\Lambda^{0}m_{(HCl)} = 425.9 \text{ S cm}^{2}\text{mol}^{-1}$ and $\Lambda^{0}m_{(NaAc)} = 91.0 \text{ S cm}^{2}\text{mol}^{-1}$ Applying Kohlrausch's law, $\Lambda^{0}m_{(HAc)} = \Lambda^{0}m_{(NaAc)} + \Lambda^{0}m_{(HCl)} - \Lambda^{0}m_{(NaCl)}$ $= 91.0 + 425.9 - 126.4 = 390.5 \text{ S cm}^{2}\text{mol}^{-1}$	1 1	2	
15.		$\Delta_r G^0 = - nFE_{cell}^0$ Here n = 2, F= 96500 C and E ⁰ cell = 1.1 V So $\Delta_r G^0 = -2 \times 96500 \times 1.1 = -212300 J/mol = -212.3 kJ/mol$	1	2	
Answer any 8 questions from 16 to 26. Each carry 3 score					
16.	(i) (ii)	No. $ \begin{array}{c} $	1	3	

+2 CHEMISTRY FIRST TERM EVALUTION AUGUST 2023 – ANSWER KEY

17.		For Daniel cell, the electrode potentials are given as:	1	
		$E_{(Cu^{2+}/Cu)} = E^{0}_{(Cu^{2+}/Cu)} + RT \ln [Cu^{2+}]$ (For cathode)	T	
		2F	1	
		$E_{(Zn^{2+}/Zn)} = E^{0}_{(Zn^{2+}/Zn)} + \underline{RT} \text{ In } [Zn^{2+}] $ (For anode)	-	
		2F		
		The cell potential, $E_{cell} = E_{(Cu^{2+}/Cu)} - E_{(Zn^{2+}/Zn)}$		
		$= \{ E^{U}_{(Cu^{2+}/Cu)} + \frac{RT}{n} \ln [Cu^{2+}] \} - \{ E^{U}_{(Zn^{2+}/Zn)} + \frac{RT}{n} \ln [Zn^{2+}] \}$		
		$= [E^{0}(Cu^{2+}/Cu) - E^{0}(Zn^{2+}/Zn)] + \frac{RI}{2E} \frac{In}{[7n^{2+}]}$		З
		Or. $E_{cell} = E_{cell}^0 + BT \ln [Cu^{2+}]$		5
		$\frac{1}{2F} \frac{1}{[Zn^{2+}]}$		
		On changing the base of logarithm, we get		
		$E_{cell} = E^{0}_{cell} + 2.303 RT \log [Cu^{2+}]$	1	
		2F [Zn ²⁺]		
		On substituting the values of R (8.314 JK ⁻¹ mol ⁻¹), F (96500 C mol ⁻¹) at 298K, the		
		above equation becomes,		
		$E_{cell} = E_{cell}^{0} + 0.0591 \log [Cu^{2+}]$		
		2 [Zn ²⁺]		
18.	a)	The molar mass obtained by colligative property measurement becomes incorrect, if	1	
		there is association or dissociation of particles. Such a molar mass is called abnormal	-	
		molar mass.		
	b)	Salt Van't Hoff factor		3
			½ x 4	
		$AI(NO_3)_3$ 4	= 2	
		Na_2SO_4 3		
10	(-)	$AI_2(SU_4)_3 \qquad 5$	1	
19.	(a)	Anode reaction: 2 Fe _(s) \rightarrow 2 Fe ²⁺ (aq)+ 4 e	1	
	(b)	Cathode reaction: $O_{2(g)} + 4 = \frac{1}{(aq)} + 4 = \frac{1}{2} = \frac{1}{2} O_{2(g)}$	1	
	(0)	a) By giving a non-metallic coating on the surface of iron with naint, varnish etc		З
		b) By coating the iron surface with electronositive metal like zinc or magnesium	1	5
		c) By coating with anti-rust solution.	-	
		d) By sacrificial protection. [Any 2 methods required]		
20.		Potassium dichromate is generally prepared from chromite ore (FeCr ₂ O ₄) by the		
		following three steps.		
		1. Conversion of chromite ore to sodium chromate by fusing with sodium		
		carbonate in presence of air.		
		4 FeCr ₂ O ₄ + 8 Na ₂ CO ₃ + 7 O ₂ \rightarrow 8 Na ₂ CrO ₄ + 2 Fe ₂ O ₃ + 8 CO ₂		
		2. Sodium chromate is acidified with sulphuric acid to form sodium dichromate.	3 x 1	3
		$2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$	= 3	
		3. Conversion of sodium dichromate to potassium dichromate by treating with		
		potassium chioride.		
		$Na_2Lr_2U_7 + Z KLI \rightarrow K_2Lr_2U_7 + Z NaLI$		

21.		Order	Molecularity			
		It is the sum of the powers of the	It is the total number of reactant			
		concentration terms in the rate law	species collide simultaneously in a			
		expression	chemical reaction		3 x 1	2
		It is an experimental quantity	It is a theoretical quantity		= 3	5
		It can be zero or fractional	It cannot be zero or fractional			
		It is applicable to both elementary	It is applicable to only elementary			
		and complex reactions.	reactions.			
			[Any 3 differences require	ed]		
22.	(a)	Standard Hydrogen Electrode (SHE) con	sists of a platinum electrode coated with			
		platinum black. The electrode is dipped	in 1 molar acidic solution. Pure hydrogen ga	as		
		at 1 bar pressure and 298K is bubbled the	hrough it. It is represented as Pt(s)/H ₂ (g)/H ⁺	-	2	
		(aq). By convention, the electrode poter	ntial of SHE is taken as zero.			
		OR, the labelled diagram of SHE.				3
	(b)	We know that $E_{cell}^0 = E_R^0 - E_L^0$ [Here SHE	is the negative electrode, i.e. anode]			
		i.e. $1.37 = E_R^0 - 0$				
		So, E ⁰ _R = 1.37 V				
		So the std. electrode potential of the give	ven electrode = <u>1.37 V</u>		1	
23.		We know that, $\log k_2/k_1 = E$	$[T_2 - T_1]$		1	
		2.3	303 R T ₁ .T ₂			
		Here $T_1 = 293$ K, $k_1 = x$, $T_2 = 313$ K, $k_2 = 4x$ and $R = 8.314$ J K ⁻¹ mol ⁻¹				
		$\log 4x = Ea$ [313 – 293]			1	3
		x 2.303 x 8.314 293 x 313				
		So, Ea = $(2.303 \times 8.314 \times 293 \times 313 \times \log 4)$				
		20	= 52854 J/mol = <u>52.854 kJ/mol</u>		1	
24.		Electronic configuration of Fe ²⁺ : [Ar] 3d	6			
		Sc ³⁺ : [Ar] 3d ⁰	5			
		Ni ²⁺ : [Ar]3d ⁸			1	3
		Cu ⁺ : [Ar] 3d ¹)			-
		Coloured ions are Fe ²⁺ , Ni ²⁺			1	
		This is because of the presence of partia	ally filled d-orbitals in these ions.		1	
		OR, in Sc ³⁺ and Cu ⁺ , there are no partial	ly filled d-orbitals. So they are colourless.			
25.	a)	Paramagnetism, Diamagnetism and ferr	omagnetism [Any 2 required]		1	
	b)	The electronic configuration of M ²⁺ ion	with atomic number 27 is 3d ⁷ .		_	
					1	3
		So there are 3 unpaired electrons.	(2/2+2) - (45 - 2 07 DM			
		The spin-only magnetic moment, $\mu s = v$	(3(3+2) = V15 = 3.8/ BIVI		1	
26.	a)	Reactions which appears to follow high	er order but actually follows first order		1	
		kinetics are called pseudo first order rea	actions.		4	2
		e.g.: Hydrolysis of ester UR, Inversion of	i cane sugar OK, any hydrolysis reaction.		1	3
	b)	Zoro order reaction			1	
	U)				Т	

Answer any 4 questions from 27 to 31. Each carry 4 score.				
27.	a)	These are properties of dilute solutions, which depend only on the number of solute	2	
		particles and not on their nature.		
	b)	The important colligative properties:	_	_
		(i) Relative lowering of vapour pressure (ii) Elevation of boiling point (iii) Depression	1	4
		of freezing point (iv) Osmotic pressure. [Any 2 Required]		
	c)	Osmotic pressure	1	
28.	a)	Fuel cells are galvanic cells which convert the energy of combustion of fuels like	1	
	,	hydrogen, methane, methanol etc. directly into electrical energy.		
	b)	Anode reaction: $2H_2 + 4OH^- \rightarrow 4H_2O + 4e^-$	1	
		Cathode reaction: $O_2 + 2H_2O + 4e^{-} \rightarrow 4OH^{-}$	1	
	c)	The advantages of fuel cell are:		
		i) The cell works continuously as long as the reactants are supplied.		л
		ii) It has higher efficiency as compared to other conventional cells.		4
		iii) It is eco-friendly (i.e. pollution free) since water is the only product		
		formed.	1	
		iv) Water obtained from $H_2 - O_2$ fuel cell can be used for drinking.		
		[Any 1 required]		
29.	(a)	Azeotropes are binary liquid mixtures having same composition in liquid phase and	1	
	(-)	vapour phase and boils at a constant temperature.		
	(b)	Let $CHCl_3$ be the component 1 and CH_2Cl_2 be the component 2.		
		Then vapour pressure of pure chloroform (P_1^0) = 200 mm of Hg and vapour pressure		
		of pure CH_2Cl_2 (P_2^0) = 415 mm of Hg.		
		Mass of Chloroform $(w_1) = 24 \text{ g}$		
		Molar mass of Chloroform, $CHCl_3$ (M ₁) = 12 + 1 + 3 x 35.5 = 119.5 g/mol		
		No. of moles of Chloroform $(n_1) = w_1/M_1 = 24/119.5 = 0.2 \text{ mol}$	1/2	4
		Mass of dichloromethane $(w_2) = 17 \text{ g}$		
		Molar mass of dichloromethane, CH_2Cl_2 (M ₂) = 12 + 2 x 1 + 2 x 35.5 = 85 g/mol		
		No. of moles of CH ₂ Cl ₂ (n ₂) = $w_2/M_2 = 17/85 = 0.2$ mol	1/2	
		Mole fraction of CH ₂ Cl ₂ (χ_2) = n ₂ /(n ₁ +n ₂) = 0.2/(0.2+0.2) = 0.5	1	
		1 otal pressure of the solution = $P_1^{\circ} + (P_2^{\circ} - P_1^{\circ}) \chi_2 = 200 + (415-200) \times 0.5$	1	
		$= \frac{3U.5 \text{ mm of Hg}}{[Or, find out y_{1}] + 2} = \frac{3U.5 \text{ mm of Hg}}{[Or, find out y_{2}] + 2} = \frac{3U.5 \text{ mm of Hg}}{[Or, find ou$		
30	2)	Arrhenius equation is $k = \Delta e^{-Ea/RT}$		
50.	uj	OR. $\ln k = \ln A - E_{a}$		
		RT	1	
		OR, $\log k = \log A - E_a$		
		2.303RT		4
		Where k – rate constant, A – Arrhenius parameter (frequency factor or pre-	1	-
	b)	exponential factor), E_a – Activation energy, R- universal gas constant and T – absolute		
		temperature.		
		For a first order reaction, $K = \frac{2.303}{+} \log \frac{[K]_0}{[D]}$	1	
		ι [κ]	Ţ	

		For 90% completion, [R]₀ = 100 and [R] = 100 – 90 = 10		
		So t = $2.303 \log [R]_0$		
		k [R]		
		= <u>2.303</u> x log <u>100</u>	1	
		0.2303 10		
		= <u>10 s</u>		
31.	a)	The regular decrease in the atomic and ionic radii along lanthanide series is known as	1	
		lanthanoid contraction.		
		It is due to the poor shielding effect of f – electrons and increase in nuclear charge.	1	
	b)	Consequences of lanthanoid contraction are:		
		(i) the 2 nd and 3 rd row transition series elements have similar atomic and ionic radii.		
		(ii) Lanthanides have similar physical properties and they occur together in nature. So	2	
		their isolation is difficult.		4
		(iii) The basicity of hydroxides of lanthanides decreases from lanthanum to lutetium.		
		[Any 2 required]		
