SECOND YEAR HIGHER SECONDARY FIRST TERM EXAMINATION AUGUST 2023 CHEMISTRY - ANSWER KEY

Qn. No.	Sub Qns	Answer Key/Value Points	Scor e	Total		
	Answer any 4 questions from 1 to 5. Each carry 1 score					
1.		(b) Molality	1	1		
2.		96487 C mol ^{–1} OR, 96500 C mol ⁻¹ OR, 1 Faraday	1	1		
3.		mol L ⁻¹ s ⁻¹ OR M s ⁻¹ OR atm s ⁻¹	1	1		
4.		(b) Kohlrausch law	1	1		
5.		Scandium (Sc)	1	1		
		Answer any 8 questions from 6 to 15. Each carry 2 score				
6.		Primary cell cannot be recharged or reused, while secondary cell can be recharged and reused. In primary cell, the cell reaction cannot be reversed but in secondary cell, the cell reaction can be reversed. [Any one difference is required] Example for primary cell: Dry cell, mercury cell (button cell) etc.	1	2		
		Example for secondary cell: Lead storage cell, Ni-Cd cell (Nicad cell), Lithium ion cell etc. [Any one example for each cell is required]	1			
7.		This is because the fluid inside our blood cell is isotonic with 0.9% (mass/volume) NaCl solution. So osmosis does not occur if we place the blood cells in this solution. OR, If the blood cells are placed in NaCl solution with higher or lower concentrations than 0.9 %, they would shrink or swell.	2	2		
8.	a) b)	The rate equation (rate law) is $r = k[A]^2$ Let the initial concentration of A be y. Then the rate law for this reaction is $r = k y^2$ When the concentration of A is increased to three times, the final concentration becomes 3y. Now the rate law is $r_1 = k(3y)^2 = 9ky^2$ So $r_1 = 9 x r$ i.e. the rate formation of B is <i>increased by 9 times</i> .	1	2		
9.		We know that $\Delta T_f = \frac{1000 \text{ K}_f \cdot \text{w}_2}{\text{w}_1 \cdot \text{M}_2}$ Here w ₂ = 0.4 g, w ₁ = 20g, $\Delta T_f = 0.75$ K, K _f = 5.12 K kg/mol, M ₂ = ? On substituting in the above equation, we get $0.75 = \frac{1000 \text{ x } 5.12 \text{ x } 0.4}{20 \text{ x } \text{M}_2}$ So, M ₂ = $\frac{1000 \text{ x } 5.12 \text{ x } 0.4}{20 \text{ x } 0.75}$	1	2		

10.	Cr O O O O O O O O O O O O O O O O O O O	$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$	2 x 1	2	
11.	$k = 2.303 \log [R]$ $t_{1/2} \qquad [R]$ $Or, \ t_{1/2} = 2.303$ k $Or, \ t_{1/2} = 0.$ Thus for a first order re of the reacting speci	t [R] $\frac{1}{10}$ $\frac{10}{10/2}$ $\log 2 = \frac{2.303 \times 0.3010}{k}$ $\frac{693}{k}$ action, half-life period is independent of initial concentration ies.	1	2	
12.	direction of osmosis ge through the semi perm osmosis.	r than osmotic pressure is applied to the solution side, the ets reversed (i.e. now the pure solvent flows out of the solution neable membrane). This phenomenon is called reverse on of sea water OR, Purification of water.	1	2	
13.	Transition elements ac (i) large surface area (ii) ability to form comp	t as catalyst due to their:	2 x 1	2	
14.	Λ ⁰ m _(NaAc) = 91.0 S cm Applying Kohlrausch's	4 S cm ² mol ⁻¹ , Λ^{0} m (HCI) = 425.9 S cm ² mol ⁻¹ and ² mol ⁻¹ law, Λ^{0} m (HAc) = Λ^{0} m (NaAc) + Λ^{0} m (HCI) – Λ^{0} m (NaCI) = 91.0 + 425.9 – 126.4 = <u>390.5 S cm²mol⁻¹</u>	1 1	2	
15.		1.1 = – 212300 J/mol = – 212.3 kJ/mol	1 1	2	
4.0	Answer any 8 questions from 16 to 26. Each carry 3 score				
16.	(i) No. (ii) \uparrow ansaud model $x_1 = 0$ Mole fraction $x_2 = 1$ $x_1 \rightarrow$ $\leftarrow x_2$	$ \begin{array}{c} $	1	3	

+2 CHEMISTRY FIRST TERM EVALUTION AUGUST 2023 – ANSWER KEY

17		For Daniel cell, the electrode notantials are siver as		
17.		For Daniel cell, the electrode potentials are given as: 5^{-2t} 5^{0} 2^{t} 1^{-1} 1^{-2t} 1^{-2t} 1^{-2t} 1^{-2t} 1^{-2t}	1	
		$E_{(Cu^{2+}/Cu)} = E^{0}_{(Cu^{2+}/Cu)} + \frac{RT}{2F} \ln [Cu^{2+}]$ (For cathode)		
		$\sum_{n=1}^{\infty} \frac{2t}{n} = \sum_{n=1}^{\infty} \frac{2t}{n}$	1	
		$E_{(Zn^{2+}/Zn)} = E^{0}_{(Zn^{2+}/Zn)} + \frac{RT}{2F} \ln [Zn^{2+}]$ (For anode)		
		The cell potential, $E_{cell} = E_{(Cu^{2+}/Cu)} - E_{(Zn^{2+}/Zn)}$		
		$= \{ E^{0}_{(Cu^{2+}/Cu)} + \frac{RT}{2F} \ln [Cu^{2+}] \} - \{ E^{0}_{(Zn^{2+}/Zn)} + \frac{RT}{2F} \ln [Zn^{2+}] \}$		
		$= [E^{0}_{(Cu}^{2+}/_{Cu}) - E^{0}_{(Zn}^{2+}/_{Zn})] + RT \ln [Cu^{2+}]$		
		$= [E^{(Cu} / Cu) = E^{(Zn} / Zn)] + KT m [Cu]$ $= 2F [Zn^{2+}]$		3
		Or, $E_{cell} = E_{cell}^{0} + RT \ln [Cu^{2+}]$		5
		$\frac{1}{2F} \frac{1}{[Zn^{2+}]}$		
		On changing the base of logarithm, we get		
			1	
		$E_{cell} = E_{cell}^{0} + \frac{2.303RT}{2F} \log \frac{[Cu^{2+}]}{[Zn^{2+}]}$		
		On substituting the values of R (8.314 JK ^{-1} mol ^{-1}), F (96500 C mol ^{-1}) at 298K, the		
		$F_{cell} = F_{cell}^0 + 0.0591 \log [Cu^{2+}]$		
		above equation becomes, $E_{cell} = E^{0}_{cell} + 0.0591 \log [Cu^{2+}]$ $2 [Zn^{2+}]$		
18.	a)	The molar mass obtained by colligative property measurement becomes incorrect, if		
	,	there is association or dissociation of particles. Such a molar mass is called abnormal	1	
		molar mass.		
	b)	Salt Van't Hoff factor		
		KCI 2		3
		Al(NO ₃) ₃ 4	½ x 4	
		Na ₂ SO ₄ 3	= 2	
		Al ₂ (SO ₄) ₃ 5		
19.	(a)	Anode reaction: 2 Fe _(s) \rightarrow 2 Fe ²⁺ (aq)+ 4 e ⁻	1	
		Cathode reaction: $O_{2(g)} + 4 H^{+}_{(aq)} + 4 e^{-} \rightarrow 2 H_2O_{(I)}$	1	
	(b)	The methods to prevent corrosion of metals are:		
	-	a) By giving a non-metallic coating on the surface of iron with paint, varnish etc.		3
		b) By coating the iron surface with electropositive metal like zinc or magnesium.	1	
		c) By coating with anti-rust solution.		
		d) By sacrificial protection. [Any 2 methods required]		
20.		Potassium dichromate is generally prepared from chromite ore (FeCr ₂ O ₄) by the		
		following three steps.		
		1. Conversion of chromite ore to sodium chromate by fusing with sodium		
		carbonate in presence of air.		
		4 FeCr ₂ O ₄ + 8 Na ₂ CO ₃ + 7 O ₂ → 8 Na ₂ CrO ₄ + 2 Fe ₂ O ₃ + 8 CO ₂		
		2. Sodium chromate is acidified with sulphuric acid to form sodium dichromate.	3 x 1	3
		$2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$	= 3	
		3. Conversion of sodium dichromate to potassium dichromate by treating with		
		potassium chloride.		
		$Na_2Cr_2O_7 + 2 \text{ KCl} \rightarrow K_2Cr_2O_7 + 2 \text{ NaCl}$		

21.		Order	Molecularity		
		It is the sum of the powers of the	It is the total number of reactant		
		concentration terms in the rate law	species collide simultaneously in a		
		expression	chemical reaction	3 x 1	3
		It is an experimental quantity	It is a theoretical quantity	= 3	5
		It can be zero or fractional	It cannot be zero or fractional		
		It is applicable to both elementary	It is applicable to only elementary		
		and complex reactions.	reactions.		
			[Any 3 differences required]		
22.	(a)		sists of a platinum electrode coated with		
			in 1 molar acidic solution. Pure hydrogen gas	2	
			hrough it. It is represented as $Pt(s)/H_2(g)/H^+$	2	
		(aq). By convention, the electrode poter <i>OR, the labelled diagram of SHE</i> .	III di OI SHE IS Lakell as zero.		3
	(b)	We know that $E_{cell}^{0} = E_{R}^{0} - E_{L}^{0}$ [Here SHE	is the negative electrode, i.e. anodel		5
	(0)	i.e. $1.37 = E_R^0 - 0$	is the negative electrode, i.e. anodej		
		So, $E^0_R = 1.37 V$			
		So the std. electrode potential of the give	ven electrode = 1.37 V	1	
23.		We know that, $\log k_2/k_1 = E$		1	
		2.3	303 R T ₁ .T ₂		
		Here T ₁ = 293 K, k ₁ = x, T ₂ = 313	K, $k_2 = 4x$ and R = 8.314 J K ⁻¹ mol ⁻¹		
		log_4x = Ea	[313 – 293]	1	3
		x 2.303 x 8.314	293 x 313		
		So, Ea = (2.303 x 8.314 x 293 x 3			
		20	= 52854 J/mol = <u>52.854 kJ/mol</u>	1	
24.		Electronic configuration of Fe ²⁺ : [Ar] 3d			
		Sc ³⁺ : [Ar] 3d ⁴	5	1	
		Ni ²⁺ : [Ar]3d ⁸ Cu ⁺ : [Ar] 3d ¹⁰		1	3
		Coloured ions are Fe ²⁺ , Ni ²⁺		1	
		This is because of the presence of partia	ally filled d-orbitals in these ions	1	
			ly filled d-orbitals. So they are colourless.	-	
25.	a)	Paramagnetism, Diamagnetism and ferr		1	
	b)	The electronic configuration of M^{2+} ion		_	
	- /			1	•
					3
		So there are 3 unpaired electrons.			
		The spin-only magnetic moment, μ s = v	/ 3(3+2) = √15 = 3.87 BM	1	
26.	a)	Reactions which appears to follow highe	er order but actually follows first order	1	
		kinetics are called pseudo first order rea			
		E.g.: Hydrolysis of ester OR, Inversion of	f cane sugar OR, any hydrolysis reaction.	1	3
	b)	Zero order reaction		1	

	I	Answer any 4 questions from 27 to 31. Each carry 4 score.		
27.	a)	These are properties of dilute solutions, which depend only on the number of solute	2	
		particles and not on their nature.		
	b)	The important colligative properties:	4	4
		(i) Relative lowering of vapour pressure (ii) Elevation of boiling point (iii) Depression	1	4
		of freezing point (iv) Osmotic pressure. [Any 2 Required]	1	
	c)	Osmotic pressure	1	
28.	a)	Fuel cells are galvanic cells which convert the energy of combustion of fuels like	1	
		hydrogen, methane, methanol etc. directly into electrical energy.		
	b)	Anode reaction: $2H_2 + 4OH^- \rightarrow 4H_2O + 4e^-$	1	
		Cathode reaction: $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	1	
	c)	The advantages of fuel cell are:		
		i) The cell works continuously as long as the reactants are supplied.		4
		ii) It has higher efficiency as compared to other conventional cells.		
		iii) It is eco-friendly (i.e. pollution free) since water is the only product	4	
		formed.	1	
		iv) Water obtained from $H_2 - O_2$ fuel cell can be used for drinking.		
		[Any 1 required]		
29.	(a)	Azeotropes are binary liquid mixtures having same composition in liquid phase and	1	
		vapour phase and boils at a constant temperature.		
	(b)	Let $CHCl_3$ be the component 1 and CH_2Cl_2 be the component 2.		
		Then vapour pressure of pure chloroform (P_1^0) = 200 mm of Hg and vapour pressure		
		of pure CH_2Cl_2 (P_2^0) = 415 mm of Hg.		
		Mass of Chloroform $(w_1) = 24 g$		
		Molar mass of Chloroform, $CHCl_3$ (M ₁) = 12 + 1 + 3 x 35.5 = 119.5 g/mol		
		No. of moles of Chloroform $(n_1) = w_1/M_1 = 24/119.5 = 0.2 \text{ mol}$	1⁄2	4
		Mass of dichloromethane $(w_2) = 17 g$		
		Molar mass of dichloromethane, CH_2Cl_2 (M ₂) = 12 + 2 x 1 + 2 x 35.5 = 85 g/mol		
		No. of moles of $CH_2Cl_2(n_2) = w_2/M_2 = 17/85 = 0.2 \text{ mol}$	1⁄2	
		Mole fraction of $CH_2Cl_2(\chi_2) = n_2/(n_1+n_2) = 0.2/(0.2+0.2) = 0.5$	1	
		Total pressure of the solution = $P_1^0 + (P_2^0 - P_1^0) \chi_2 = 200 + (415-200) \times 0.5$	1	
		= <u>307.5 mm of Hg</u>		
20		[Or, find out χ_1 also and then calculate P_1 ($P_1 = P_1^0 \chi_1$), P_2 ($P_2 = P_2^0 \chi_2$) & $P_{Total} = P_1 + P_2$]		
30.	a)	Arrhenius equation is $k = A \cdot e^{-Ea/RT}$		
		OR, $\ln k = \ln A - E_a$	4	
		RT CD Las h Las A S	1	
		OR, log k = log A $-$ E _a 2.303RT		
		Where k – rate constant, A – Arrhenius parameter (frequency factor or pre-	1	4
	b)	exponential factor), E_a – Activation energy, R- universal gas constant and T – absolute	-	
	~,	temperature.		
		For a first order reaction, $k= 2.303 \log [R]_0$		
		$\frac{1}{t} \frac{1}{R}$	1	

		For 90% completion, [R] ₀ = 100 and [R] = 100 – 90 = 10		
		So t = $2.303 \log [R]_0$		
		k [R]		
		= <u>2.303</u> x log <u>100</u>	1	
		0.2303 10		
		= <u>10 s</u>		
31.	a)	The regular decrease in the atomic and ionic radii along lanthanide series is known as	1	
		lanthanoid contraction.		
		It is due to the poor shielding effect of f – electrons and increase in nuclear charge.	1	
	b)	Consequences of lanthanoid contraction are:		
		(i) the 2 nd and 3 rd row transition series elements have similar atomic and ionic radii.		
		(ii) Lanthanides have similar physical properties and they occur together in nature. So	2	
		their isolation is difficult.		4
		(iii) The basicity of hydroxides of lanthanides decreases from lanthanum to lutetium.		
		[Any 2 required]		
