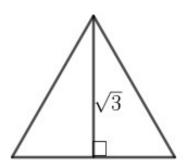


FIRST TERM SAMPLE PRACTICE PAPER

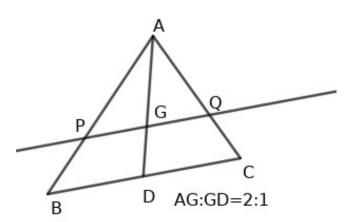
MATHEMATICS IX

Time: 2 hours and 30 minutes Score: 80

- ◆ Answer any 3 questions. Each carries 2 scores.
- 1) Total cost of a pen and two pencils is 17 rupees. Total cost of a pen and a pencil is 13 rupees.
 - a) What is the cost of a pencil?
 - b) What is the cost of a pen?
- 2) Perimeter of a square is 4 cementer.
 - a) What is the length of its side?
 - b) What is the length of its diagonal?
- 3) In the figure P divides AB in the ratio $1{:}2$. The lines BC and PD are parallel lines.



- a) What is AD:CD?
- b) If AD=5 centimetre, then what is AC ?
- 4) The integers $\,x$ and $\,y$ are related as $\,x+y=12$ and $\,xy=11$.
 - a) Write the expansion of (x+1)(y+1).
 - b) Find (x+1)(y+1)?
 - ◆ Answer any 4 questions. Each carries 3 scores
- 5) Three equations are given below.

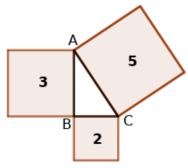

$$x + y = 7$$
, $y + z = 4$, $x + z = 3$

- a) What is x + y + z?
- b) Find $x,\ y$ and $\ z.$

6) The perpendicular distance from a vertex to the opposite side of an equilateral triangle is $\sqrt{3}$ centimetre.

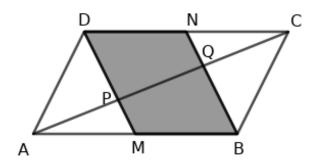
- a) What is the length of its side?
- b) Find the area of this triangle.
- 7) A point G divides the median of a triangle in the ratio $2{:}1$ as in the figure. The line PQ is parallel to BC.

- a) Write the special name of ${\cal G}\,$ in a triangle.
- b) What is AP:PB?
- c) If AC=21 centimetre then what is the length AQ?
- 8) a) Write the expansion of (x+y)(u+v).
 - b) Using this write (x+3)(y+4) as the sum of four terms.
- 9) \boldsymbol{x} and \boldsymbol{y} are the small angles of a right triangle.
 - a) What is x+y ?
 - b) If $\,x-y=10\,{\rm then}$ find the small angles of the triangle?

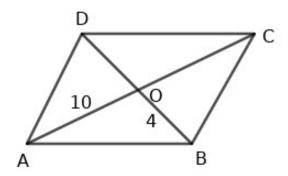

- 10) Draw the equilateral triangle of perimeter 11 centimetre.
- 11) Let's see the patterns given below,

$$\frac{1}{9} = 0.111 \cdots$$

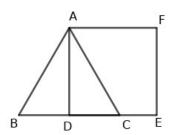
$$\frac{2}{9} = 0.222 \cdots$$


$$\frac{3}{9} = 0.333 \cdots$$

- a) Write the next line.
- b) Write $0.444\cdots$ as a fraction.
- c) Write the decimal form of $\sqrt{0.444\cdots}$.
- ◆ Answer any 8 questions. Each carries 4 scores.
- 12) x five rupee coins and y ten rupee coins costs 80 rupees.
 - \boldsymbol{x} ten rupee coins and \boldsymbol{y} five rupee coins costs 70 rupees.
 - a) Write the equations.
 - b) Find the number of coins of each denomination?
- 13) Sum of two odd numbers is $\,24$ and the product is $\,143$. If x and y are the numbers then,
 - a) Expand (x + 2)(y + 2).
 - b) Calculate (x+2)(y+2).
- 14) Three squares with areas of 2 cm^2 , 3 cm^2 and 5 cm^2 are joined to form a triangle, as shown in the figure.


$$(\sqrt{2} = 1.41, \sqrt{3} = 1.73, \sqrt{5} = 2.23)$$

- a) What are the length of its sides?
- b) Calculate the approximate perimeter of the triangle?
- 15) In the figure $\ ABCD$ is a parallelogram. Mid point of $\ AB$ is $\ M$ and Mid point of $\ CD$ is $\ N$.


- a) Is the shaded part a parallelogram? Why?
- b) Prove that AP = PQ = QC.
- c) If PQ = 4 centimetre, find AC ?
- 16) a, b, c, d are consecutive natural numbers.
 - a) If a = x then express b, c and d in terms of x.
 - b) Find the difference between $\ bc$ and $\ ad.$
 - c) If bc = 72 then find ad 2 .
- 17) ABCD is a parallelogram. The diagonals intersect at $\ O.$

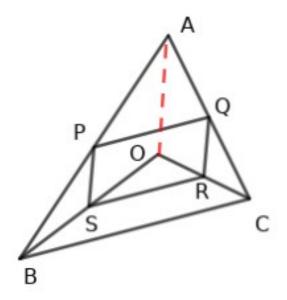
$$OD = x + y, \quad OC = x + 3y$$

- a) Write the equations.
- b) Calculate \boldsymbol{x} and \boldsymbol{y} .
- c) Calculate the length of diagonals.

18) A square is drawn on the altitude of an equilateral triangle. Perimeter of the triangle is 6centimeter.

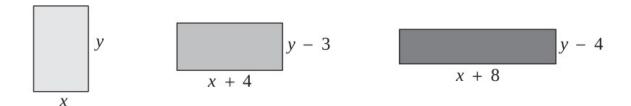
- a) What are the lengths of the sides of the triangle?
- b) What is the area of square?
- c) Find the altitude of the triangle.
- 19) Draw an isosceles triangle with a perimeter of 13 centimeters, where the length of each equal side is $1\frac{1}{2}$ the length of the shorter side.
- 20) Let's see the pattern given below.

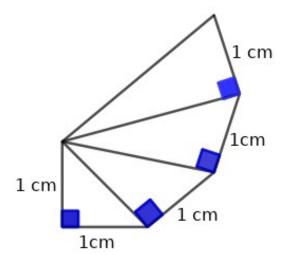
$$1^2 - 0^2 = 1$$


$$2^2 - 1^2 = 3$$

$$3^2 - 2^2 = 5$$

- a) Write 11 as the difference of two perfect squares.
- b) If $N=a^2-b^2$, N is an odd number and a,b are consecutive natural numbers, then what is a+b?
- c) p and q are natural numbers , $17 = p^2 q^2$ then what is p q?
- 21) The sum of the digits of a two-digit number is 7. When the digits are reversed, the new two-digit number obtained is 27 more than the original number.
 - a) If \boldsymbol{x} and \boldsymbol{y} are the digits then write the equation.
 - b) Find the number by solving the equations.
- 22) The product of two natural numbers 70 and their sum is 17.
 - a) If x and y are numbers (x > y). Expand (x 1)(y 1).
 - b) Calculate (x-1)(y-1).


- ◆ Answer any 6 questions. Each carries 5 scores
- 23) An object is moving along a straight line. It starts with an initial speed of u m/s, and its speed increases at a rate of $u m/s^2$. Using the data given below, calculate the initial speed u and the rate of increase of speed u.
 - If the speed v after t seconds is related as v=u+at
 - Speed v=24~m/s at t=6 seconds
 - Speed v=36m/s at t=10 seconds
 - a) Write the equation using the given data.
 - b) Find u and a.
 - c) What will be the speed after 12 seconds?
- 24) In triangle ABC, P is the midpoint of AB and Q is the midpoint of AC. In triangle BOC, R is the midpoint of OC and S is the midpoint of OB .


- a) If BC=12 centimetre find PQ ?
- b) If BC=12 centimetre find SR?
- c) If OA=8, what are the values of PS and QR?
- d) Suggest a suitable name for PQRS.

25) The rectangles in the figure have equal areas.

- a) Form the equations.
- b) Find x and y?
- c) Write the sides of the rectangle in the middle.
- 26) Right triangles are drawn as shown in the figure.

If counting the right triangles from the bottom,...

- a) What is the hypotenuse of first right triangle?
- b) What are the sides of second right triangle?
- c) What is the perpendicular sides of 10th right triangle?
- d) What will be the area of square drawn on the hypotenuse of 10th right triangle.
- 27) Draw a regular hexagon with a perimeter of 20 centimetre.

(Hint: Draw a line 10 cm long and divide it into three equal parts. Draw a circle with one of these segments as the radius. Then, draw the regular hexagon with vertices on this circle.)

28) The diagonals of a square are perpendicular bisectors. It divide the square into four equal right triangles. In the figure, a right triangle is removed from a square of side $\sqrt{2}$ metre.

- a) What is the hypotenuse of the removed right triangle?
- b) What is the length of the diagonal of the square?
- c) Find the perimeter of the shape in the figure.
- 29) $4n, \ 4n^2-1$ and $4n^2+1$ forms a Pythagorean triplets for $n{=}1,2,3\cdots$
 - a) Write the triples for n=1.
 - b) If the hypotenuse of a right triangle is 17, what is the length of its smallest side?
 - c) If the middle number in the triplets is 399, then what is the largest number in the triplets?

FIRST TERM SAMPLE PRACTICE PAPER

MATHEMATICS IX

ANSWER KEY

Time: 2 hours and 30 minutes Score: 80

- 1) a) The number of pencils in the first case is one more than in the second case.
 Therefore one pencil costs 17 13 = 4 Rupees.
 - b) Cost of a pen = 3 Rupees.
- 2) a) 1 centimetre
 - b) $\sqrt{2}$ centimetre
- 3) a) 1:2
 - b) 15 centimetre

4) a)
$$(x+1)(y+1) = xy + x + y + 1$$
.
b) $(x+1)(y+1) = 11 + 12 + 1 = 24$

5) a)
$$x+y+y+z+x+z=7+4+3$$

$$2(x+y+z)=14$$

$$x+y+z=7$$

b)
$$x + y + z = 7$$
 $y + z = 4$ $x + z = 3$ $7 + z = 7$ $y + 0 = 4$ $x + 0 = 3$ $z = 0$ $y = 4$ $x = 3$

- 6) a) 2 centimetre
 - b) $\sqrt{3}$ square centimetres
- 7) a) Centroid of the triangle
 - b) 2:1
 - c) Since AP:PB=2:1 then $\ AQ:QC=2:1$ Given that AC=21 centimetre, therefore AQ=14 centimetre

8) a)
$$(x+y)(u+v) = xu + xv + yu + yv$$

b) $(x+3)(y+4) = xy + 4x + 3y + 12$

SAMAGRA PLUS

9) a)
$$x + y = 90^0$$

b)
$$x+y=90$$
 and $x-y=10$, on solving $x=50^0$ and $y=40^0$

- 10) *Draw a line of length 11 centimetre.
 - * Divide it into three equal parts using the property of parallel lines.
 - * Complete the equilateral triangle.

11) a)
$$0.444\cdots$$

b)
$$0.444 \cdots = \frac{4}{9}$$

c)
$$\sqrt{0.444\cdots} = \sqrt{\frac{4}{9}} = \frac{2}{3} = \frac{6}{9} = 0.666\cdots$$

12) a)
$$5x + 10y = 80$$
, $10x + 5y = 70$

b)
$$x = 4, y = 6$$

13) a)
$$xy + 2x + 2y + 4$$
.

b)
$$xy + 2x + 2y + 4 = xy + 2(x + y) + 4 = 143 + 2 \times 24 + 4 = 195$$

14) a)
$$\sqrt{2}$$
 centimetre, $\sqrt{3}$ centimetre, $\sqrt{5}$ centimetre

b)
$$\sqrt{2} + \sqrt{3} + \sqrt{5} = 1.41 + 1.73 + 2.23 = 5.37$$
 centimetre

- 15) a) Yes. Since ABCD is a parallelogram, MB is parallel to DN. Two opposite sides are parallel and equal. So the shaded part is a parallelogram.
 - b) In triangle ABQ, PM is parallel to BQ.

$$\frac{AM}{BM} = \frac{AP}{PQ}$$

Since AM = BM we can say AP = PQ.

Similarly PQ = QC. That is AP = PQ = QC.

c) 12cm

16) a)
$$b = x + 1$$
, $c = x + 2$ $d = x + 3$

b)
$$bc - ad = (x+1)(x+2) - x(x+3)$$

= $x^2 + 3x + 2 - x^2 - 3x$
= 2

c)
$$bc-ad=2$$
 , therefore $ad=70$

$$ad - 2 = 70 - 2 = 68$$

SAMAGRA PLUS

17) a)
$$x + y = 4$$
, $x + 3y = 10$

$$\text{b) } x=1 \text{ and } y=3$$

c)
$$20$$
 centimetre and 4 centimetre

18) a)
$$2$$
 centimetre

b)
$$3$$
 square centimetres

c)
$$\sqrt{3}$$
 centimetre

19) Construction

20) a)
$$11 = 6^2 - 5^2$$

b)
$$a+b=N$$

c)
$$p - q = 1$$

21) a)
$$x + y = 7$$
, $10y + x = 10x + y + 27$

Equations are
$$y+x=7$$
 and $y-x=3$

b)
$$x=2 \text{ and } y=5$$

Therefore the two-digit number is 25.

22) a)
$$xy - x - y + 1$$
.

b)
$$(x-1)(y-1) = xy - (x+y) + 1 = 70 - 17 + 1 = 54$$
.

23) a)
$$u + 6a = 24, u + 10a = 36$$

b) By solving the equations we get
$$u=6, a=3$$

c)
$$v = 6 + 3 \times 12 = 42 \, m/s$$

24) a)
$$PQ = \frac{1}{2}BC = \frac{1}{2} \times 12 = 6$$

b)
$$SR=6$$
 centimetre

c)
$$PS=4$$
 centimetre and $QR=4$ centimetre

d) Parallelogram

25) a)
$$xy = (x+4)(y-3)$$
 $xy = (x+8)(y-4)$ $xy = xy - 3x + 4y - 12$ $xy = xy - 4x + 8y - 32$ $2y - x = 8$

- b) By solving x=4,y=6
- c) Sides of middle rectangle are $4+4=8\,\mathrm{and}\,6-3=3$
- 26) a) $\sqrt{2}$ centimetre
 - b) $\sqrt{2}$ centimetre, $\sqrt{3}$ centimetre and 1 centimetre
 - c) $\sqrt{10}$ centimetre and 1 centimetre
 - d) 11 centimetre
- 27) Hint: Draw a line 10 cm long and divide it into three equal parts. Draw a circle with one of these segments as the radius. Then, draw the regular hexagon with vertices on this circle.
- 28) a) $\sqrt{2}$ metre
 - b) 2 metre
- c) $3\sqrt{2}+2$ metre
- 29) a) 4, 3, 5

b)
$$4n^2 + 1 = 17$$

 $n = 2$

Smallest side
$$=4n=4\times 2=8$$

c)
$$4n^2 - 1 = 399$$

 $4n^2 = 400$

Largest number =
$$4n^2 + 1 = 400 + 1 = 401$$