Marking Scheme Class X Session 2024-25 MATHEMATICS BASIC (Code No.241)

TIME: 3 hours

MAX.MARKS: 80

Q. No.	Section A	Marks
1.	B) 90	1
2.	A) consistent with unique solution	1
3.	D) 7	1
4.	C) 2 $\sqrt{a^2 + b^2}$	1
5.	D) 145°	1
6.	B) 15 cm	1
7.	A) $\frac{5}{4}$	1
8.	B) ΔΕΑD	1
9.	C) 3780	1
10.	B) 40	1
11.	D) 52°	1
12.	B) 5 cm	1
13.	A) cos 60°	1
14.	(C) $3\pi r^2$	1
15.	D) 4	1
16.	B) real and equal	1
17.	C) 30 - 40	1
18.	D) $25x^2 - 5x - 2$	1
19.	 A) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) 	1
20.	C) Assertion (A) is true but reason (R) is false.	1
	Section B	

21 (A).	$PA^{2} = PB^{2}$ $\Rightarrow (x - 4)^{2} + (y - 3)^{2} = (x - 3)^{2} + (y - 4)^{2}$ $\Rightarrow x = y \text{ or } x - y = 0$					1 1			
					OR				
21 (B).	AB = 6 cm	n = AC							1/2
	$OC = \sqrt{36}$ Point C is								1 ½
22.							Correct fig	ure	1/2
		B							1/2
	AM = 4 cn	n							/2
	$OM = \sqrt{04}$ $= \sqrt{5^2}$ $= 3 cr$	- 42	$\overline{M^2}$						1
23 (A).	$\frac{\frac{12}{2}}{2}[2 \times 20 + 11d] = 900$ $\Rightarrow d = 10$ Also $a_{12} = 20 + 11 \times 10 = 130$					1/2 1 1/2			
					OR				
23 (B).	Putting $n = 1$, $S_1 = a = 6 - 1^2 = 5$ (<i>i</i>) Putting $n = 2$, $S_2 = 2a + d = 6 \times 2 - 2^2 = 8$ (<i>ii</i>) Solving (i) & (ii) $d = -2$						1/2 1 1/2		
24.	sin(A - B)	-							1/2
	<i>cos(A + B</i> Solving (i)	-	$\Rightarrow A + B = A$						1/2 1/2+1/2
25.	Class	5-10	10-15	15-20	20-25	25-30	30-35]	
	Frequency	5	6	15	10	5	4	-	
	Modal class is 15-20. $Mode = 15 + 5 \times (\frac{15-6}{2 \times 15-6-10})$ = 18.21(approx.)				-	1/2 1 1/2			
				Sectio	n-C				

26.	Let $\sqrt{5}$ be a rational number.	
	$\therefore \sqrt{5} = \frac{p}{q}$, where q $\neq 0$ and p & q are coprime.	1/2
	$5q^2 = p^2 \implies p^2$ is divisible by 5	
	\Rightarrow p is divisible by 5 (i)	1
	\Rightarrow p = 3a, where 'a' is a postive integer 25a ² = 5q ² \Rightarrow q ² = 5a ² \Rightarrow q ² is divisible by 5	
	\Rightarrow q is divisible by 5 (ii)	1
	(i) and (ii) leads to contradiction as 'p' and 'q' are coprime.	1/2
	$\therefore \sqrt{5}$ is an irrational number.	
27(A).	Let the required point on the y axis be P(0,y).	1/2
	1 B(-1,2) A(4,-5)	
	Let AP : PB be k : 1 Therefore, $\frac{-k+4}{k+1} = 0$	1
	$\Rightarrow k=4$	
	Therefore, required ratio is 4:1	1/2
	$\& y = \frac{8-5}{5} = \frac{3}{5}$	1/2 1/
	Hence point of intersection is $(0,\frac{3}{5})$.	1/2
	OR	
27 (B).	Let the line $4x + y = 4$ intersects AB at $P(x_1, y_1)$ such that AP: PB=k:1	
	4x+y=4	
	A(-2,-1) P B(3,5)	
	$x_1 = \frac{3k-2}{k+1}$ and $y_1 = \frac{5k-1}{k+1}$ (x_1, y_1) lies on $4x + y = 4$	1
	Therefore, $4\left(\frac{3k-2}{k+1}\right) + \left(\frac{5k-1}{k+1}\right) = 4$ $\Rightarrow k=1$	½ 1
	Required ratio is 1:1	1/2

28.	$LHS = (\frac{1}{sinA} - sinA)(\frac{1}{cosA} - cosA)$					1/2
	$=\frac{1-\sin^2 A}{\sin A} \times \frac{1-\cos^2 A}{\cos A}$ $=\frac{\cos^2 A}{\sin A} \times \frac{\sin^2 A}{\cos A}$					1
	$=\frac{\cos A}{\sin A} \times \frac{\sin A}{\cos A}$ $=\cos A \sin A$	sA				1/2
	$RHS = \frac{\cos A \sin \alpha}{\sin^2 A + \cos \alpha}$	$\frac{nA}{s^2A}$				1
	=cosA si	nA = LHS				
29.				25		
	Class	х	frequency(f)	$u = \frac{x - 25}{10}$	fu	
	0-10	5	6	-2	-12	
	10-20	15	10	-1	-10	
	20-30	25	15	0	0	Corroct
	30-40	35	9	1	9	Correct table
	40-50	45	10	2	20	$1\frac{1}{2}$
			$\Sigma f = 50$		$\sum fu = 7$	
	<i>Mean</i> = 25 + 1 = 26.4	$10 \times (\frac{7}{50})$				1 ½
30 (A).	(i) $\Delta OAP \cong \Delta OBP$ $\angle APO = \angle BPO$ Or OP bisects $\angle P$ (ii) $\Delta AQP \cong \Delta BQP$ $\Rightarrow AQ=QB$ and $\angle AQP = \angle BQP$ AB is a straight line therefore $\angle AQP = \angle BQP = 90^{\circ}$ Hence OP is right bisector of AB					1 1 1
30 (B).	Correct Given, to	prove figure a	OR and constructio	n		1
<u>зо (в)</u> .	Correct proof	prove, ligure a				2

31.	Let the two-digit number be $10x + y$ Therefore $(10x + y) + (10y + x) = 99$ $\Rightarrow x + y = 9$ (i) Also, $x = 3 + y$ (ii) Solving (i) & (ii) to get $y = 3$, $x = 6$ Therefore, required number is 63	1/2 1/2 1/2 1/2 1/2 1/2 1/2
	Section D	
32 (A).	Let the number of books purchased be x	1
	Therefore, cost price of 1 book = $\frac{1920}{x}$ Therefore $\frac{1920}{x} - \frac{1920}{x+4} = 24$	
	⇒ 1920 × 4 = 24x(x + 4)	1
	or $x^2 + 4x - 320 = 0$ $\Rightarrow (x + 20)(x - 16) = 0$	1
	$\Rightarrow (x + 20)(x - 16) = 0$ $\Rightarrow x = 16, x \neq -20$	
	Number of books bought=16 Price of each book $=\frac{1920}{16} = $ ₹120	
	-16 - 120	1
	OR	
32 (B).	Let the initial average speed of the train be x km/hr.	1
	Therefore $\frac{132}{x} + \frac{140}{x+4} = 4$ $\Rightarrow 4x^2 - 256x - 528 = 0$	
	or $x^2 - 64x - 132 = 0$	1
	$\Rightarrow (x - 66)(x + 2) = 0$ $\Rightarrow x = 66, \ x \neq -2$	1
	Initial average speed of train= 66 km/hr	
	Time taken to cover the distances separately= $\frac{132}{66}$ & $\frac{140}{70}$ i.e. 2 hours each	1
33.	Correct Given, to prove, Construction and figure Correct Proof	$\frac{\frac{1}{2} \times 4=2}{3}$
34.	(i) Perimeter of sector = $2r + \frac{2\pi r\theta}{360} = 73.12$	
	$\Rightarrow 2(24) + \frac{2 \times 3.14 \times 24 \times \theta}{360} = 73.12$	1
	$\Rightarrow \theta = 60^{\circ}$ (ii) Area of minor compart $(3.14 \times 24 \times 24 \times 60 - 1.73 \times 24 \times 24)$ and 2	
	(ii)Area of minor segment = $\left(\frac{3.14 \times 24 \times 24 \times 60}{360} - \frac{1.73}{4} \times 24 \times 24\right) cm^2$ = $(301.44 - 249.12) cm^2$	2
	$= 52.32 \ cm^2$	1

35 (A).	Let AB be the building and CD be the tower.	1 mark for correct figure
	Here $tan60^\circ = \sqrt{3} = \frac{h}{r}$	1
	$\Rightarrow h = x\sqrt{3}$ (i)	1/2
	$tan45^{\circ} = \frac{9}{2} = 1$	1
	$\Rightarrow x = 9$ m(ii) (Distance between tower and building)	1/2
	Solving (i) & (ii) to get $h = 9 \times 1.732 = 15.588m$	1/2
	Therefore, the height of the tower $= h + 9 = 24.588 m$.	1/2
	OR	
35 (B).	$ \begin{array}{c} B \\ 75m \\ 45 \\ 45 \\ y \\ D \\ x \\ x \\ C \end{array} $ Let AB be the light house and C & D be positions of ships.	1 mark for correct figure
	$tan30^{\circ} = \frac{1}{\sqrt{3}} = \frac{75}{x+y}$ $\Rightarrow x + y = 75\sqrt{3}(i)$	1 ½
	$tan45^{\circ}=1=\frac{75}{v}$	1
	$\Rightarrow y = 75(ii)$ Solving (i) & (ii) to get $x = 75(\sqrt{3} - 1)$	1⁄2
	$\Rightarrow x = 75 \times 0.732$ = 54.9 m Distance between the ships is 54.9 m	1
	Section E	
36.	(i) Number of students who do not prefer to walk = $200 - 120 = 80$	1/2
	P (selected student doesn't prefer to walk) = $\frac{80}{200}$ or $\frac{2}{5}$	/2 1/2

	 (ii) Total number of students who prefer to walk or use bicycle = 120 + 50 = 170 	1/2
	P (selected student prefers to walk or use bicycle) = $\frac{170}{200}$ or $\frac{17}{20}$	1⁄2
	(iii) (A) 50% of walking students who used bicycle = 60Number of students who already use bicycle = 50	1/2
	P (selected student uses bicycle) = $\frac{110}{200}$ or $\frac{11}{20}$ OR	¹ ⁄ ₂ 1
	(B) Number of students who preferred to be dropped by car = $200 - (120 + 50 + 20)$ = 10 students	1
	P (selected student is dropped by car) = $\frac{10}{200}$ or $\frac{1}{20}$	1
37.	(i) 1 and 4	1
	(ii) $x = 5/2$	1
	(iii) (A) At $x = 5/2$, $p(x) = 2.25$ Therefore, $h = 0.10 + 2.25 = 2.35m$	1 1
	(B) $-x^2 + 5x - 4 = 2$	1/
	$x^{2} - 5x + 6 = 0$ (x - 2)(x - 3) = 0	1/2 1/2
	$\Rightarrow x = 2$ and $x = 3$ Therefore, required points are (2,0) and (3,0)	1/2 1/2
38.	(i) $l^2 = (1.2)^2 + (0.5)^2$ = 1.44 + 0.25	1/2
	$\Rightarrow l = \sqrt{1.69} = 1.3cm$	1⁄2
	(ii) Curved surface area of sharpened part	1/2
	$ = \pi \times 0.5 \times 1.3 = (0.65 \pi) cm^2 $	1/2 1/2
	(iii) (A) Total surface area of pencil	
	= CSA of cylinder + CSA of cone + area of base circle = $\pi \times 0.5 \times 0.5 \times 21 + 0.65 \pi + \pi \times (0.5)^2$	1/2
	$= (5.25 + 0.65 + 0.25)\pi$ = (6.15 \pi) cm ²	1 1⁄2
	OR	
	(B) Length of cylindrical part of shortened pencil = $(21 - 8.2) cm = 12.8 cm$	1/2
	So, volume of cylindrical part of shortened pencil = $\pi \times 0.5 \times 0.5 \times 12.8$	1
	$= (3.2 \pi) cm^3$	1/2