SECOND TERM EVALUATION 2024-25

PHYSICS Standard: IX Time: 1 ½ Hour Total Score: 40

Instructions:

- First 15 minutes is given as cool-off time. Use this time for reading and understanding the questions.
- Answer the questions based on instructions.
- Allocate time according to marks.

Answer any three questions from 1 to 4. (1 mark each)

- 1. Write the formula for acceleration due to gravity g in terms of G, M, and R.
- 2. Define buoyant force.
- 3. What is the SI unit of power?
- 4. When is work said to be done on an object?

Answer any seven questions from 5 to 13. (2 marks each)

- 5. A stone and a feather are dropped from the same height on Earth.a) Which one will hit the ground first?b) Why does this difference occur in the presence of air?
- 6. The weight of an object on Earth is 49 N. What will be its weight on the Moon, where $gMoon = \frac{1}{c}gEarth$
- 7. Define relative density. If the relative density of a liquid is 0.8, will an object with a density of 0.9 g/cm³ float in it? Justify.
- 8. Write two differences between mass and weight.
- 9. A vehicle of mass 1000 kg accelerates uniformly from rest to 20 m/s in 10 s.a) What is the acceleration?
 - b) Calculate the net force acting on the vehicle.
- 10. What is the principle of floatation?
- 11. Explain why the weight of an object is zero during free fall.
- 12. A stone is tied to a string and rotated in a horizontal circle. What is the force acting on the stone, and in which direction does it act?
- 13. State Newton's third law of motion and give a real-life example.

Answer any five questions from 14 to 19. (3 marks each)

14.

- a) State the Universal Law of Gravitation.
- b) Write the formula for gravitational force and define each term.

c) If the distance between two masses is doubled, how does the force between them change?

- 15. A body of mass 5 kg is traveling at a velocity of 10 m/s. Calculate:
 - a) Its initial momentum.
 - b) The force required to stop it in 2 seconds.
 - c) The rate of change of momentum.
- 16. A block of iron and a block of wood, both weighing 50 N, are fully immersed in water.a) Which will experience a greater buoyant force?
 - b) Why?
- 17. A planet has twice the mass of Earth and the same radius.
 - a) How will the acceleration due to gravity on this planet compare to that on Earth?
 - b) Derive the formula for ggg on a planet in terms of GGG, MMM, and RRR.

18.

- a) Why does a ship made of iron float, but an iron nail sinks in water?
- b) State the factors affecting buoyant force.
 - 19. A body of mass 10 kg falls freely from rest under gravity.
 - a) What will be its velocity after 5 seconds?
 - b) Calculate the distance it travels during this time.

Answer any two questions from 20 to 22. (4 marks each)

20. The data for the motion of an object is given below. Draw the velocity-time graph and answer the following questions:

Time (s)	0	1	2	3	4	5	6
Velocity (m/s)	0	5	10	15	20	20	20

- a) Calculate the acceleration during the first 3 seconds.
- b) Find the total distance travelled by the object.
 - 21. A stone is thrown vertically upward with an initial velocity of 30 m/s.

a) Calculate the maximum height reached.

- b) How long will it take to reach the ground? (Take g=10 m/s²)
- 22. A block weighing 300 N is placed on an inclined plane.

a) What is the normal reaction force?

b) If the angle of inclination is 30°, calculate the component of the weight acting along the plane.