www.educationobserver.com Kerala STD IX Second Term exam 2023

PHYSICS ANSWER KEY BIJU MATHEW

KERALA IInd TERM Exam 2023- PHYSICS ANSWER KEY

<u></u> N	Ans	swer	
	$6.67 \times 10^{-11} \text{ Nm}^2/\text{ka}^2$		
	Adhesive force		
	ON		
	Joule		
	a. relative density is the densit	ty compared to a reference substance	
	(usually water) under standa	ard conditions.	
	b· Density of ice is greater tha	n Kerosene, 50 it will sink·	
	a. The area under velocity-time graph	gives the displacement	
	b. The size of <u>the graph increases</u> as u	we decrease the scale·	
	Every object will remain at rest or in uniform motion in a straight line		
	unless compelled to change its state b	by the action of an external force	
	a. $F = \frac{Gm1m^2}{d^2}$, $\mathcal{S} \times \mathcal{G} = \mathcal{G} \times 10 \times 208 \times G = \frac{Gx10x20}{d^2} = d = 5m$		
	Gy10y10		
	b. $F = \frac{6410470}{4} = 25$		
	Work done by the applied force is po	isitive and work done by fractional	
0	Force is negative	without accolonation	
Ŭ	a. Graph (2) - motion of a body without acceleration		
1	b. Graph (3)- a truiy failing boay	In which of machine	
1	Inertia of rest	Inertia of motion	
	Dust comes out of a nanging mat	nthietes take a short run before	
	when beaten with a stick	doing a long jump	
	Passengers standing in a bus tend to	H fan continues its rotation for	
	fall backwards when the bus	some time even after it is switched	
		- 00	

	b. Electrical energy $ ightarrow$ mechanical energy
13	a· Impulse- momentum principle
	b. Any two applications

	Airbags in cars reduce the impact of a collision, China and glass wares are packed with soft material when transported, During a pole vault jump, the impact is reduced by falling on foam bed.
14	a. Honey
	b. Viscosity
	It is the characteristic property of a liquid to oppose the relative
	motion between its different layers
15	a· Momentum before collision = m1u1 + m2u2 = (6 × 8) + (4 × 4) = 48+16=
	64Kg m⁄s
	b∙ Momentum after collision = 64 Kg m∕s
	c· Law of Conservation of momentum
16	a· mass × g _{earth} = 1752 × 10 = 17520N
	b· mass × g _{moon} = 1752 × 1·62 = 2803·2N
17	a. An aero plane flying at certain height
	b. Stretched bow and wound spring - potential energy
18	a· Centripetal force, fc= mv²/R = 30X36/30= 60N m= 40+10=50 Kg = 50 x6x 6 = 60 N b· To reduce centripetal force
	a. Reduce the speed or mass of the body
	h: Increase the radius of the path
19	
	a• Instrument P- Common Balance
	$b\cdot$ In poles, the value g is more and weight becomes more

20	a.	Zero, in free fall no reacting force is acting upward, and gravitational
		force is utilized to give acceleration to the object \cdot
	Ь	Gravitational force = GM/ R ²

21	a· Potential energy is converted into kinetic energy
	b· Kinetic energy= K=1/2MV ² m=200g, 200/1000 = 0·2 Kg
	1/2X0·2X0·25X0·25= = 0 ·00625 J
	c· Work done = change in Kinetic energy = $0.00625 J = 6.25 \times 10^{-3}$
22	a· Velocity at 3 rd second = 6m/s and velocity at 9 th second =18 m/s
	b. Momentum of the car at 3^{rd} second = 800x 6=4800kg
	m/s Momentum of the car at 9 th second = 800×
	18=14400kg m/s
	<i>c</i> ⋅ Rate of change of momentum of the car= $\frac{m(v-u)}{t} = \frac{800(18-6)}{6}$
	= 1600 N
	d· Rate of change of momentum of the car = Magnitude of force= rate of change of momentum = 1600N
