CHEMISTRY ANSWER KEY

STD IX Second Term model paper 2

Section A: Answer any 4 questions.

$(4 \times 1 = 4 \text{ Marks})$

1. **Rate of a chemical reaction:** The rate of a reaction is the change in concentration of reactants or products per unit time.

2. Catalyst definition and example:

A catalyst is a substance that increases the rate of a chemical reaction without being consumed. Example: Manganese dioxide (MnO2MnO_2MnO2) in the decomposition of hydrogen peroxide.

3. Decomposition reaction and example:

A decomposition reaction is a chemical reaction where one compound breaks down into two or more substances.

Example: CaCO₃ \rightarrow CaO+CO₂

4. Chemical formula of magnesium nitride: Mg_3N_2

5. Why does reaction rate increase with temperature?

An increase in temperature increases the kinetic energy of particles, leading to more frequent and energetic collisions.

Section B: Answer any 4 questions.

(4 × 2 = 8 Marks)

- 6. Effect of surface area on reaction rate:
 - Larger surface area increases the rate of reaction as more particles are exposed to react.
 - Example: Powdered calcium carbonate reacts faster with acid than a solid piece of calcium carbonate.

7. Decomposition of hydrogen peroxide:

Balanced equation: $2H_2O_2 \rightarrow 2H_2O+O_2$ Role of MnO₂ Acts as a catalyst to speed up the decomposition.

8. Homogeneous vs. Heterogeneous catalysts:

- $\circ~$ Homogeneous: Catalyst and reactants are in the same phase (e.g., H_2SO_4 in esterification).
- Heterogeneous: Catalyst and reactants are in different phases (e.g., Pt in hydrogenation).
- 9. Collision theory and its importance:

- States that for a reaction to occur, particles must collide with enough energy and proper orientation.
- o It explains how temperature, concentration, and catalysts influence reaction rates.

Thermal decomposition of calcium carbonate: Reaction: CaCO₃→CaO+CO₂ Products: Calcium oxide and carbon dioxide.

Section C: Answer any 4 questions.

$(4 \times 3 = 12 \text{ Marks})$

11. Haber process:

- Reaction: N_2+3H_2 ↔ $2NH_3$
- Catalyst: Iron (Fe).
- Conditions: 200 atm pressure, 450°C temperature.
- Used for large-scale ammonia production.

12. Effect of concentration on reaction rate:

- Higher concentration increases the frequency of collisions, leading to a faster reaction.
- Example: The reaction between magnesium and hydrochloric acid occurs faster with concentrated HCl than with dilute HCl

13. Displacement reaction and real-life application:

- Reaction where a more reactive element displaces a less reactive element from its compound.
- Example: $Zn+CuSO_4$ → $ZnSO_4+Cu$
- Application: Extraction of metals.

14. Decomposition of ammonium dichromate:

Reaction: $(NH_4)_2Cr_2O_7 \rightarrow Cr_2O_3 + N_2 + 4H_2O$

- Products: Chromium(III) oxide, nitrogen gas, and water vapor.
- Type of reaction: Thermal decomposition.

15. Increasing rate of reaction between zinc and dilute HCl

- Methods:
 - 1. Increase the temperature to provide more energy for collisions.
 - 2. Use powdered zinc to increase surface area.

Section D: Answer any 4 questions.

$(4 \times 4 = 16 \text{ Marks})$

16. Energy profile diagram for exothermic reaction:

- Diagram: Energy of reactants > energy of products.
- Features: Activation energy is a peak, and the energy difference shows heat release.
- Example: Combustion of methane.

17. Factors affecting reaction rates:

- Nature of reactants: Ionic reactions occur faster than covalent reactions.
- Concentration: Higher concentration increases collisions.
- Temperature: Higher temperature increases kinetic energy.
- Catalyst: Lowers activation energy.
- Surface area: More surface area increases collision frequency.

18. Classify reactions:

- $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$: Displacement.
- $2H_2O_2
 ightarrow 2H_2O + O_2$: Decomposition.
- $NaOH + HCl o NaCl + H_2O$: Double decomposition.
- $2Mg + O_2
 ightarrow 2MgO$: Combination.

19.

Role of catalyst in Contact process:

- Catalyst: Vanadium pentoxide (V2O5V_2O_5V2O5).
- Reaction:
 - 1. $2SO_2 + O_2 \leftrightarrow 2SO_3$.

2.
$$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$$
.

0

Importance: Increases reaction rate for sulfuric acid production.

20. Effect of temperature on reaction rate:

- Experiment:
 - 1. Mix sodium thiosulphate and hydrochloric acid at different temperatures.
 - 2. Measure the time taken for a precipitate to form.
- Observation: Reaction occurs faster at higher temperatures.

• Explanation: Higher temperature increases particle collisions.