Maths Second Term model question paper 1

Answer key

Part 1: Short Answer Questions (2 Marks Each)

- 1. a) The scale factor of the smaller triangle to the larger triangle is $\frac{3}{4}$.
 - b) Perimeter of the larger triangle = $rac{4}{3} imes 24 = 32 \, \mathrm{cm}.$
- 2. a) Length of diagonal = $\sqrt{8^2+6^2}=\sqrt{100}=10\,\mathrm{cm}$.
 - b) Circumference of the circle = $\pi \times 10 = 31.42\,\mathrm{cm}$ (approx.).
- 3. a) Radius = $\frac{28}{2} = 14 \, \text{m}$.
 - b) Area = $\pi r^2 = \pi (14)^2 = 615.75 \, \mathrm{m}^2$ (approx.).
- 4. The numbers are 6 and 4.

Part 2: Medium-Length Questions (3 Marks Each)

- 5. a) Perimeter of the larger triangle = $\frac{5}{3} \times 24 = 40 \ \mathrm{cm}.$
 - b) Triangles are similar because corresponding angles are equal, and sides are in proportion.
- 6. a) Ratio of diameters = 2:3:4.
 - b) Area of the largest circle = $rac{16}{4} imes 12.56 = 50.24\,\mathrm{cm}^2$.
- 7. a) Equation: |x-y|=9.
 - b) Points are 3 and -6.
- 8. a) Perimeter = 2(x+x+5) = 4x+10.
 - b) Area = $x(x+5)=10 imes15=150\,\mathrm{cm}^2$.
- 9. a) Central angle of one arc = $\frac{360^{\circ}}{4} = 90^{\circ}$.
 - b) Length of one arc = $\frac{90}{360} \times 2\pi r^{4/2} \times 7 = 11$ cm (approx.).

10.

- a) Length of the other leg = $\sqrt{13^2-12^2}=5~\mathrm{cm}$.
- b) Area = $\frac{1}{2} \times 12 \times 5 = 30 \, \mathrm{cm}^2$.

Ratio of sides = 3:4:5.

Lengths are $9\,\mathrm{cm}, 12\,\mathrm{cm}, 15\,\mathrm{cm}$.

Area =
$$\frac{1}{2} \times 12 \times 9 = 54 \, \text{cm}^2$$
.

12.

- a) Length of diagonal = $\sqrt{8^2 + 8^2} = \sqrt{128} = 11.31 \, \text{cm}$ (approx.).
- b) Area = $8 \times 8 = 64 \, \text{cm}^2$.

13.

a)
$$p(2) = 2^3 - 6(2^2) + 11(2) - 6 = 8 - 24 + 22 - 6 = 0$$
.

b) x-2 is a factor since p(2)=0.

14.

a) Area of
$$60^\circ$$
 sector = $\frac{60}{360}\pi(10)^2=\frac{\pi}{6} imes100=52.36\,\mathrm{cm}^2$ (approx.).

Area of 90° sector = $\frac{\pi}{4} \times 100 = 78.54 \, \mathrm{cm}^2$ (approx.).

b) Ratio =
$$\frac{52.36}{78.54} = \frac{2}{3}$$
.

- 15. Construction involves scaling each side by $\frac{3}{2}$: $9~\mathrm{cm}$, $12~\mathrm{cm}$, $15~\mathrm{cm}$.
- 16. The numbers are 6 and 8.

17.

a) Height =
$$\sqrt{8^2 - 4^2} = \sqrt{64 - 16} = \sqrt{48} = 6.93 \, \mathrm{cm}$$
 (approx.).

b) Area =
$$\frac{\sqrt{3}}{4}(8)^2 = 27.71\,\mathrm{cm}^2$$
 (approx.).

18.

a) Area of larger triangle =
$$\frac{3^2}{2^2} imes 16 = 36 \, cm^2$$
.

b) Perimeter =
$$\frac{3}{2} \times 24 = 36$$
 cm.

19.

a) Perimeter =
$$\pi r+2r=rac{22}{7} imes7+14=36\,\mathrm{cm}.$$
 b) Area = $rac{1}{2}\pi r^2=rac{1}{2} imes22 imes7=77\,\mathrm{cm}^2.$

b) Area =
$$\frac{1}{2}\pi r^2 = \frac{1}{2}\times 22\times 7 = 77\,\mathrm{cm}^2$$

20. Solutions:
$$x = 11$$
 or $x = -3$.

21.

a)
$$f(2) = 2^2 - 3(2) + 2 = 0$$
.

b)
$$f(-1) = (-1)^2 - 3(-1) + 2 = 6$$
.

c)
$$f(0) = 0^2 - 3(0) + 2 = 2$$
.

Part 4: Extended Questions (5 Marks Each)

22.

- a) Diagonal = $\sqrt{8^2 + 6^2} = 10 \, \text{cm}$.
- b) Area of one triangle = $\frac{1}{2}$ × $8 \times 6 = 24$ cm².

23.

a) Area of inner circle = $\pi(7)^2=153.94\,\mathrm{cm}^2$.

Area of outer circle = $\pi(14)^2 = 615.75 \, \mathrm{cm}^2$.

b) Annular area = $615.75 - 153.94 = 461.81 \, \mathrm{cm}^2$.

24.

- a) q(1) = -3, q(-1) = -1.
- b) Remainder = q(1) = -3.

25.

- a) Area of one sector = $\frac{\pi r^2}{8}=\frac{22}{7} imes14 imes14 imes\frac{1}{8}=76.97\,\mathrm{cm}^2.$
- b) Area of 5 sectors = $5 \times 76.97 = 384.85 \, \mathrm{cm}^2$.
- 26. Construct triangle with sides $9 \, \mathrm{cm}, 12 \, \mathrm{cm}, 15 \, \mathrm{cm}$.

27.

- a) Total area of shaded circles = $4 imes \pi(2)^2 = 50.24\,\mathrm{cm}^2$.
- b) Area of rectangle = $10 imes 6 = 60 \ cm^2$.
- c) Unshaded area = $60-50.24=9.76\,\mathrm{cm^2}$.

28.

- a) Perimeter of n-th square = 4n cm.
- b) Perimeter of 5-th square = $20 \, \mathrm{cm}$.

29.

- a) Radius = $\frac{\mathrm{Area~of~triangle}}{\mathrm{Semi-perimeter}} = 2~\mathrm{cm}.$
- b) Area = $\pi r^2 = 12.56 \, \mathrm{cm}^2$.