

First Year Higher Secondary Model Examination 2025 Chemistry Answer Key

Qn No		Value Points	Scores	Total
		Qn No 1 to 5 (Answer Any 4) $4 \times 1 = 4$		
1		a) 4 b)1	1/2+1/2	
2		sp^2	1	
3		NH ₃	1	4
4		c)Carius tube	1	
5		117	1	
		Qn No 6 to 15 (Answer Any 8) $8 \times 2 = 1$	6	
6	i	Law of multiple proportion	1	
	ii	Statement	1	2
	i	29Cu - [Ar]3d ¹⁰ 4s ¹ 24Cr - [Ar]3d ⁵ 4s ¹	1/2+1/2	
7	ii	Copper - extra stability is due to fully filled 3d orbitals Chromium - extra stability is due to half filled 3d orbitals		2
8 i		$^{23}_{11}Na^+$	1	2
	ii	Mg ²⁺	RX 1	
9		Definition of hydrogen bond Intermolecular hydrogen bonding and Intramolecular hydrogen bonding	1	2
10		Extensive property - Internal energy, mass Intensive property - density, refractive index		2
11	i	Statement	1TE	ACHE
	ii	Pressure has no effect since there is no change in number of moles in the reaction	1	2
12	i	Any eg of disproportionation reaction with explanation		2
	ii	Mn(IV)O ₂ (+4), KMn(VII)O ₄ (+7)	1/2+1/2	
13	a	3-Ethyl-1,1-dimethylcyclohexane	1	2
	b	Pentane -2,4-dione	1	-
14		c,d	1+1	2
15		HH H H H H H H H H H H H H H H H H H H	1	2

Qn No		Value Points	Scores	Total	
16	i	MF = n x EF	1		
	ii	No of molecules = $\frac{\text{mass in gram}}{\text{molar mass}} \times N_A$ = $\frac{36}{180} \times N_A = 0.2 \times 6.022 \times 10^{23}$	1	3	
	iii	$Molarity = \frac{Mass \text{ of solute}}{Molar Mass \times Volume \text{ in mL}} \times 1000$ $= \frac{36}{180 \times 1000} \times 1000 = 0.2M$	1	5	
17	i	It is impossible to determine simultaneously, the exact position and exact momentum of an electron.	1	3	
	ii	$\Delta v = \frac{h}{4\pi m\Delta \chi} = \frac{6.626 \times 10^{-34}}{4 \times 3.14 \times 0.25 \times 10^{-3} \times 3.313 \times 10^{-9}}$ $= 0.6369 \times 10^{-22} \text{ m/s}$	2		
	i	This is due to stable electronic configuration of Nitrogen	1		
18	ii	Absence of vacant d orbitals in Nitrogen	1	3	
	iii	Boron is Anomalous due to its small small size,high IE, high electron affinity and absence of vacant d orbitals	1		
19	i	.i) The chemical and physical properties of elements are periodic function of their atomic numbers	1		
	ii	(n-1)d ¹⁻¹⁰ ns ⁰⁻²	1	3	
	iii	Fluorine	1		
20	i	$\frac{\sigma(1s)^2}{\pi(2px)^2} \frac{\sigma^*(1s)^2}{\sigma(2s)^2} \frac{\sigma(2s)^2}{\sigma(2pz)^2} \frac{\sigma(2pz)^2}{\sigma(2py)^2}$	1		
CHE 5, Th	emis Ir#s	Bond Order = $\frac{1}{2}$ (Nb-Na) = $\frac{1}{2}(10-4)$ = 3 Value of bond order is positive so $O_2^{2^+}$ is stable.Since there are no unpaired electron in any orbital,the molecule is diamagnetic.	2		
	i	Spontaneous process which takes place without the help of an external agent	1		
21	ii	The reaction becomes spontaneous at		3	
	iii	c) melting of ice	1		
22	i	Conjugate base - SO_4^{2-} Conjugate acid - H_2SO_4	1	3	
	ii	$[H_3O^+] = 2 \times 0.04 \text{ M}$, sulphuric acid is dibasic $pH = -\log [H_3O^+] = -\log [2 \times 0.04] =$ 1.096	2		
23	i	a)First reaction is a Redox reaction because here oxidation and reduction takes placeb). Decomposition calcium carbonate is not Redox reaction because there is no change in oxidation number of any elements.	1	3	

Qn No		Value Points	Scores	Total	Qn No			Value Points	Scores	Total
	ii	H ₂ S -reductant, Cl ₂ - Oxidant	1		1 Г					
	iii	HAu(lll)Cl4, Mn(IV)O2	1		1			↑		
24		Position Isomerism Butan-1-ol $CH_3-CH_2-CH_2-CH_2-OH$; Butan-2-ol $CH_3-CH_2-CH(OH)-CH_3$ Functional group Isomerism Butan-1-ol $CH_3-CH_2-CH_2-CH_2-OH$; Ethoxyethane $CH_3-CH_2-O-CH_2-CH_3$ Metamerism Ethoxyethane $CH_3-CH_2-O-CH_2-CH_3$; Methoxypropane	3	3			iii	Total enthalpy of reactants H Total enthalpy of products Reactants Reaction Coordinate	1	
		CH ₃ -O-CH ₂ -CH ₂ -CH ₃ a)A is 2-Bromobutane,CH ₃ -CH ₂ -CHBr-		<u> </u>			i	Acidic solutionNH4ClPH<7Basic solutionCH3COONaPH>7Neutral solutionNaClPH=7	1 1/2	
25	i	CH ₃ b) B is 1- Bromobutane, CH ₃ -CH ₂ -CH ₂ - CH ₂ Br		- 3		30		Common ion effect is the suppression of the dissociation of a weak electrolyte by the addition of a strong electrolyte		4
25	ii	Rule behind the formation of A is Markovnikov Rule B is formed by Peroxide Effect/Kharasch effect/Anti Markovnikov Rule	2	5		ii	containing common ion. Eg:Dissociation of CH ₃ COOH can be suppressed by the addition of CH ₃ COONa or HCl	1 1⁄2		
							iii	Acetic acid+ Sodium acetate	1	1
26	6 Reactant Process Reagent and Condition Pro Benzene Acetvlation H, Pd B Reduction 3C1, hv 500K Acetor Chlorination CH, COCI, Anhyd. AICI, Cyclo Qn No 27 to 31 (Answer Any 4) 4 × 4 = 1			3		31	i	Homolysis:-When a covalent bond breaks in such a way that each atom takes away one electron of the shared pair,it is called homolytic fission or homolysis•Heterolysis:-When a covalent bond breaks in such a way that both the electrons of the covalent bond are taken away by one of the bonded atoms , is	2	4
27	i	BF_3 120Trigonal planar CH_4 109.5Tetrahedral PCl_5 120,90Trigonal bi pyramidal $BeCl_2$ 180Linear SF_6 90Octahedral ASS	½x8	4 ION	OF (CHE	ii	called heterolytic fission or heterolysis The stability of carbocation increases in the order $CH_3^+ < CH_3CH_2^+ < (CH_3)_2CH^+ < (CH_3)_3C^+$	1	
			TF	ACHI				Hyperconjugation	2	
28	i	Principal quantum number (n) Azimuthal quantum number (l) Magnetic quantum number (m) Spin quantum number (s)		4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	ii	Principal quantum number (n)								
	iii									
29	iv i	b It states that the enthalpy change in a chemical reaction is the same whether the reaction takes place in one step or several steps.	1	4						
	ii	$A_{\text{MS5}} \Delta_{, H} = \left[\Delta_{, H} (N_{2}O) + 3\Delta_{, H} (CO_{2}) \right] - \left[\Delta_{, H} (N_{2}O_{2}) + 3\Delta_{, H} (CO) \right]$ $= \left[81 + 3 \times (-393) \right] - \left[9.7 + 5 \times (-110) \right] = -777.7 kJ$	2]					