

Reg. No. :

Name :

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, FEBRUARY 2025 Part – III CHEMISTRY Maximum : 60 Scores

Time : 2 Hours Cool-off Time : 15 Minutes

General Instructions to Candidates :

- There is a 'Cool off time' of 15 minutes in addition to the writing time.
- Use 'cool off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- · Calculations, figures and graphs should be shown in the answer sheet itself.
- · Give equations wherever necessary.
- · Malayalam version of the questions is also provided.
- Electronic devices except non programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിട്ട് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' ചോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

				Score
Answ	er any 4 question	s from 1 to 5. Each	carries I score.	(4×1=4)
1. H	low many signific:	ant figures are prese	nt in,	
а) 18.42	b) 0.0004		
2. H	ybridisation of bo	oron in BCl ₃ is		
a) sp	b) sp ²	c) sp ³	d) sp ³ d
3. Id	lentify the Lewis b	base among the follo	owing.	
a) BF ₃	b) NH ₃	c) AICl ₃	d) H*
4. E	stimation of amou	nt of sulfur in an or	ganic compound is carrie	d out in
a) Sodium fusion t	ube		
b)) Conical flask			
c)	Carius tube			
d)	Kjeldahl's flask			
5. A	tomic number of e	element with symbo	l Uus is	
Answe	r anv eight quest	ions from 6 to 15.	Each carries 2 scores.	(8×2=16)
				and the second
6. i)	2	of chemical combin	ation illustrated by the g	
	compounds.			(1)
	CuO and Cu ₂ O			
ii)	State the law.			(1)
7. i)	Cu(Z = 29) and	Cr(Z = 24) shows e	extra stability. Write their	subshell electronic
	configuration.			(1)
ii)	Account for the e	extra stability.		(1)

FY 525 Chemistry 2/15

.

8. i) Number of protons, electrons and neutrons in a species are equal to 11, 10 and 12 respectively. Write the proper symbol of the species. (1) ii) Which among the following is isoelectronic with the above species ? F²⁻, Ca²⁺, Mg²⁺, O⁻ (1) 9. What is a hydrogen bond ? Name the two types of hydrogen bonding. (1+1)

- 10. Classify the following into extensive properties and intensive properties.
 - 1) Internal energy
 - 2) Density
 - 3) Refractive index
 - 4) Mass (2)
- 11. i) State Le-Chatelier principle. (1)
 - ii) What is the effect of pressure on the reaction ?

$$N_{2_{(g)}} + O_{2_{(g)}} \rightleftharpoons 2NO_{(g)}$$
(1)

- 12. i) Explain disproportionation redox reaction with example. (1)
 - ii) Identify the oxidation number of Mn in MnO_2 and $KMnO_4$. (1)
- 13. Give the IUPAC name of the following compounds.

a)
$$\bigvee_{\substack{CH_3 - C - CH_2 - C - CH_3\\ 0 & 0}}$$
 (1+1)

FY 525 Chemistry 4/15

Score

14. Identify the aromatic compounds among the following.

15. Draw the New Mann's projections for the conformations of ethane and name them. (2)

Answer any 8 questions from 16 to 26. Each carries 3 scores. (8×3=24)

16. i)	$C_6H_{12}O_6$ is the Molecular Formula (MF) of glucose and CH_2O is its Empirical Form	mula
	(EF). Give the relation between MF and EF.	(1)
ii)	Calculate number of glucose molecules present in 36g of glucose.	
	(Atomic mass of C, H and O are 12u, 1u and 16u respectively)	(1)
iii)	Calculate molarity of solution made by dissolving 36g glucose in one litre water.	(1)
17. i)	State Heisenberg uncertainty principle.	(1)
ii)	Calculate the uncertainty in velocity of a moving particle with mass 0.25g,	
	if the uncertainty in its position is 3.313 nm. (h = $6.626 \times 10^{-34} \text{kgm}^2\text{s}^{-2}$)	(2)
18. Ac	ccount for the following.	
i)	First ionisation enthalpy of Nitrogen is greater than that of oxygen.	(1)
ii)	PCl ₅ is a stable compound of phosphorous but NCl ₅ do not exist.	(1)
iii)	Boron show differences from other members of its group.	(1)

FY 525 Chemistry 6/15

		INTER CONTRACTOR
1		Score
	State modern periodic law.	(1)
ii)	Write the general outer electronic configuration of d block elements.	(1)
iii)	Name the most electronegative element.	(1)
20. i)	Write the molecular electronic configuration of $O_2^{2^+}$ species.	(1)
ii)	Based on bond order and electronic configuration, predict the stability ar magnetism of $O_2^{2^+}$ species.	nd (2)
21. i)	Define a spontaneous process.	(1)
ii)	Identify the condition of temperature for a process to be spontaneous whe	re ∆H and
	ΔS are positive.	
	(Hint : $\Delta G = \Delta H - T \Delta S$).	(1)
iii)	Which of the following is a process taking place with increase in entrop	y ?
	a) Condensation of steam	
	b) Freezing of water	
	c) Melting of ice.	(1)
22. i)	HSO_4^- can act as both Bronsted acid and base. Write the corresponding co	niugate
	acid and conjugate base of HSO_4^- .	(1)
ii)	Calculate pH of a 0.04M solution of H_2SO_4 in water.	(2)
23. i)	Identify the redox reaction among the following and justify.	
	a) $H_2S + Cl_2 \rightarrow 2HC1 + S$	
	b) $CaCO_3 \rightarrow CaO + CO_2$	(1)
ii)	Which is the oxidant and reductant in the above identified redox reaction	175 01455
iii)	Write the stock notation for HAuCl ₄ and MnO ₂ .	
)	2 ¹	(1)
	EV 525 Chamiater 9/15	

FY 525 Chemistry 8/15

I MARTIN AN AREA SAN AN AN AN

Score

24. Write three pairs of different structural isomers that may have the molecular formula $C_4H_{10}O$. Mention the type of isomerism shown by each pair. (3)

- 25. i) Predict the major product in the following reactions.
 - a) $CH_3 CH_2 CH = CH_2 + HBr \longrightarrow A$
 - b) $CH_3 CH_2 CH = CH_2 + HBr \xrightarrow{Peroxide} B$ (1)
 - ii) Write the name of the rule/effect behind the formation of product A and B. (2)
- 26. Match the following.

ReactantProcessReagent and ConditionProductBenzeneAcetylationH2/PdBHCReduction3Cl2/hv 500KAcetophenoneChlorinationCH3COCl, Anhyd. AlCl3Cyclohexane

- Answer any 4 questions from 27 to 31. Each carries 4 scores. (4×4=16)
- 27. Fill in the blanks.

BF ₃	120°	Trigonal planar
CH4		. <u> </u>
PCl ₅	120°, ——	
BeCl ₂		
SF ₆		

(8×½=4)

(3)

Score

28. i)	Write the names of four quantum numbers.	(1)
ii)	Which among them explain the average distance of electron from the nucleus ?	(1)
iii)	Represent the orbital with quantum numbers.	(1)
	a) $n = 2$, $l = 0$ b) $n = 3$, $l = 1$	
iv)	Which among the following is correct representation of electron arrangement in a p orbital ?	
	a) $1 \downarrow \uparrow \uparrow$ b) $\uparrow \uparrow \uparrow$	(1)

29. i) State Hess's law of constant heat summation.

a) | 1↓ | ↑ | |

ii) Calculate enthalpy of reaction for the formation of N2O and CO2 as per the reaction,

 $N_2O_{4(g)} + 3CO_{(g)} \rightarrow N_2O_{(g)} + 3CO_{2(g)}$ if $\Delta_f H^\circ$ of CO, CO₂, N₂O and N₂O₄ are -110.0 kJ mol⁻¹, -393.0 kJ mol⁻¹, 81.0 kJ mol⁻¹, 9.4 kJ mol⁻¹. (2)

b) | | | | |

- iii) Draw the enthalpy diagram for exothermic reaction.
- 30. i) Match the following.

Acidic solution	NaCl	pH > 7
Basic solution	NH₄CI	pH = 7
Neutral solution	CH ₃ COONa	pH < 7

- ii) Explain common ion effect with an example.
- iii) Give an example for acidic buffer solution.

(1)

(11/2)

(1)

(1%)

(1)

Score

- 31. i) Differentiate the following.
 - a) Homolysis and Heterolysis.
 - b) Nucleophile and electrophile. (2)
 - ii) Write the increasing order of stability of the given carbocations.

$$CH_{3}^{+}, (CH_{3})_{3}C^{+}, (CH_{3})_{2}CH^{+}, CH_{3}CH_{2}^{+}$$
 (1)

iii) Name the electron displacement effect.

$$\begin{array}{cccc} H & H & H^{+} & H \\ I & I & H^{+} & H^{+} & I \\ H - C & - & C & \leftrightarrow & H - & C = & C \\ I & H & H & H & H \end{array}$$
(1)