SECOND YEAR HIGHER SECONDARY MODEL EXAMINATION-FEBRUARY - 2025 SY - 626 ## PART - III ## BIOLOGY (BOTANY & ZOOLOGY) ## SCORING KEY (UNOFFICIAL) | | PART | -A | | |---|---|-------------------------------|----------------------------| | | ВОТА | NY | | | Qn. No. | Scoring ind | licators | Marks | | | PART | Г - І | | | | Answer any 3 questions fro | m 1 – 5. Each carry 1 score | | | 1. | Agarose. | | 1 | | 2. | Stratification. | | 1 | | 3. | c / Filiform apparatus. | | 1 | | 4. | Carrying capacity. | | 1 | | 5. | Genetic Engineering Approval Committee. | | 1 | | | PART | r – II | | | Answer any 9 questions from 6 – 16. Each carry 2 scores | | | | | 6. | a) – PCR / Polymerase Chain Reaction.
b) – <i>Taq</i> polymerase. | | 1 +1 = 2 | | 7. | A | В | | | | a) Commensalism 2 | 2) Orchid on a tree | | | | b) Predation 3 | 3) Cactus and moth | | | | c) Competition 4 | A) Abingdon tortoise and goat | | | | d) Parasitism 1 |) Loranthus | $\frac{1}{2} \times 4 = 2$ | | 8. | Energy at a lower trophic level is always more than at a higher level / when energy flow from one trophic level to the next level some energy is lost as heat at each step. / It always follows law of 10% / Only 10% of the energy is transferred to each trophic level from the lower trophic level. (Any 1 point give full score) | | 1 + 1 = 2 | | 9. | X – Proinsulin
Y – Insulin / A peptide
C Peptide. | | 1 + 1 = 2 | | 10. Bt toxin protein is produced as inactive proto bacteria. 11. Leaching Catabolism Humification Mineralisation | oxin in bacterial cell, so it does not kill | 2 | | |---|--|----------------------------|--| | 11. Leaching Catabolism Humification | | 2 | | | Catabolism
Humification | | | | | Catabolism
Humification | | | | | Humification | | | | | | | | | | I Williciansanon | | $\frac{1}{2} \times 4 = 2$ | | | | | | | | 12. a) Origin of replication (ori) / Selectable mark | a) Origin of replication (ori) / Selectable markers / Cloning Sites (Any two) | | | | b) pBR322 (Not given as artificial | | | | | 13. Grazing Food Chain | Detritus Food Chain | | | | 1 | Starts with detritus / dead organic | | | | | natter. t is the major channel of energy flow | | | | | n terrestrial ecosystem. | | | | | Dead organic matter belongs to first | | | | trophic level. | rophic level. | 1.1 2 | | | | (Any one point in each) | 1 + 1 = 2 | | | 14. (a) A – Mortality / (D) | | 1 + 1 = 2 | | | B – Emigration / (E) b) Natality and Immigration / I & B | B – Emigration / (E) b) Natality and Immigration / I & B | | | | | | | | | 15. True fruit-Fruit developed from the ovary. | davant ayampla) | | | | | Eg:- Mango / Coconut / Pea (relevant example) False fruit – Fruit developed from thalamus / Fruit developed from the flower parts | | | | other than ovary. | Trust developed from the nower parts | | | | 1 | Eg:- Apple / Cashew / Strawberry | | | | (Example 1) | amples for each type give half score) | 1 + 1 = 2 | | | 16. Vallisneria / Hydrilla / Zostera | (Any one example) | | | | Adaptations | | | | | | Pollen grains are long, ribbon like and carried passively inside the water / Pollen grains are protected from wetting by mucilaginous covering / Female flower have long stalk / In <i>Vallisneria pollen</i> grains released into the surface of water and carried to the stigma by air current /In sea grass the flowers remains submerged. (Any three feature) | | | | | | | | | | | | | | the sugma by an entient in sea grass the nower | | | | | PART – III | | | | |------------|--|------------|--| | | Answer any 3 questions from 17 – 20. Each carry 3 scores | | | | Qn. No. | Scoring indicators | Marks | | | 17. | a) – GMO An organism (bacteria, fungi, plants or animals) whose genetic material is | 1+1+1=3 | | | | altered is called Genetically Modified Organism. | | | | | RNAi - RNA interference technology / Silencing or inhibition of translation of
specific mRNA by complementary double stranded RNA (dsRNA) is called RNAi
technology . | | | | | Bioreactors – A large vessels that can be used for large scale production of Products by continuous culture method. / Bioreactors are vessels in which raw materials are biologically converted into specific products. | | | | 18. | a) A – Primary Consumer | | | | | B – Tertiary Consumer | | | | | b) First trophic level – Grass, Tree | | | | | Second trophic level – grasshopper, cow | | | | | Third trophic level – Birds, fishes, wolf | 1 + 2 = 3 | | | | Fourth trophic level – Man, Lion | | | | 19. | Direct Method / Chemical method | | | | | In chemical method bacterial cells are treated with divalent cation such as Ca ²⁺ | | | | | to increase cell permeability. | | | | | Then these cells are treated with rDNA on ice followed by heat shock at 42°C and | | | | | then placed again in ice. | | | | | The chemical method made the host cell competent to take rDNA. Microinjection | | | | | Direct injection of recombinant DNA (rDNA) into the nucleus of an animal cell is | | | | | called microinjection / It is the rDNA transfer method for animal cell. | | | | | Biolistics or Gene gun | | | | | Bombardment of plant cell with high velocity micro particle of gold or tungsten | | | | | coated with DNA is called biolistics / It is the rDNA transfer method for plant | | | | | cell. | | | | | Use of disarmed Pathogen Vector | | | | | Disarmed pathogen vector when allowed to infect the cell transfer the | | | | | recombinant DNA into the host. | 1 +1+1 = 3 | | | | (Any three methods) | 1 .1.1 | | | 20. | a) Syngamy | | | | | Triple fusion | | | | | b) Primary Endosperm Nucleus / PEN / Primary Endosperm Cell
Primary endosperm cell develops into endosperm / Develops into nutritive
endosperm tissue | 1+2=3 | | | | | | | | | T | | | |---------|--|------------------------------------|---------------------------------| | | | RT -B | | | | | DLOGY | | | Qn. No. | | indicators | Marks | | | | ART - I | | | | Answer any 3 question | ns from 1 – 6. Each carry 1 score | | | 1. | Progesterone | | 1 | | 2. | IMR – Infant Mortality Rate | | 1 | | | MMR – Maternal Mortality Rate | | 1 | | 3. | b / ABO blood group in human. | | 1 | | 4. | A – Transcription
B – Translation | | $\frac{1}{2} + \frac{1}{2} = 1$ | | 5. | Salmonella typhi | | 1 | | | P/ | ART – II | | | | | s from 6 – 16. Each carry 2 scores | | | 6. | A | В | | | | a) LH surge | 3) Ovulation | | | | b) Leydig cell | 4) Androgen | $\frac{1}{2} \times 4 = 2$ | | | c) Ampullary region | 1) Fertilisation | /2 A T = | | | d) Sertoli cell | 2) Nutrition to the spermatid | | | 7. | a) – Symbiotic associations between fund | oi and roots of higher plants | | | | a) – Symbiotic associations between fungi and roots of higher plants. | | 1 + 1 = 2 | | | b) – Fungal symbiont in these associations absorbs phosphorus from soil and passes | | | | | it to the plant / develop resistance to root-borne pathogens / tolerance to salinity and | | | | | drought / Help an overall increase in plant growth and development. | | | | | | (Any one benefit) | | | 8. | a) – Theory of Chemical Evolution / Oparin – Haldane Theory | | | | | b) – CH ₄ , NH ₃ , H ₂ O, H ₂ . | | 1 + 1 = 2 | | 9. | a) - One of the parental DNA strand was | s conserved in newly formed DNA | | | | molecule after replication / Newly synthesised DNA molecule have one parental and | | 1+1 = | | | one newly synthesised stand | | • • | | | b) – DNA dependent DNA polymerase / I | DNA Polymerase. | | | | c) – S - phase. | | | | Qn. No. | Scoring indicators | | |---------|--|-------| | 10. | A – Citric acid B – Trichoderma polysporum C – Lactic acid D – Monascus purpureus a) The process of evolution of different species in a given geographical area starting from a point and literally radiating to other areas of geography (habitats) is called | | | | adaptive radiation. b) Homologous organ Analogous organ | | | | Organs that have similar structure but having different function. Homology indicates common ancestry. Homologous organ represents the divergent evolution. The organs that are having similar function but differ in structure and origins are called analogous organs. Analogous organ represents the convergent evolution. | | | | Examples Fore limbs of whale, bat, human and cheetah. Hearts of Vertebrates Brain of Vertebrates Tendril in Cucurbits & Thorn in Bougainvillea Examples Wings of Butterfly and Birds. Eye of Octopus and Mammals. Flippers of Penguins and Dolphins Tuber of Potato and Sweet Potato. | | | | (Any one difference or example in each) | | | 12. | a) – Cu-T. b) – Cu ions released by Cu-T suppress sperm motility and the fertilising capacity of sperms / Increases the phagocytosis of sperms. | | | 13. | a) – Pregnancy
b) – Placenta
c) – Human Placental Lactogen (hPL) / estrogen / progesterone (Any two) | 1+1=2 | | 14. | a) – Nucleosome | | |---------|---|----------------------------| | | b) – Histone octamer | | | | c) Euchromatin – Loosely packed / Light stainable / Transcriptionally active | $\frac{1}{2} \times 4 = 2$ | | | Heterochromatin – Densely packed / Dark stainable / Transcriptionally inactive | | | | (Any two differences) | | | 15. | a) Hardy-Weinberg Principle / Hardy-Weinberg Equilibrium. | | | | b) Gene flow or gene migration / genetic drift / mutation / genetic recombination / | | | | natural selection. | 1 + 1 = 2 | | | (Any two factors) | | | 16. | a) – 5' UACGUACGUACG 3'. (Coding strand in question paper is wrongly given) | 1 + 1 = 2 | | | b) – Promoter , Structural gene, Terminator. | 1,1 2 | | | PART – III | | | | Answer any 3 questions from 17 – 20. Each carry 3 scores | | | | | | | Qn. No. | Scoring indicators | Marks | | 17. | a) ZIFT - Zygote Intra Fallopian Transfer | | | | Transfer of zygote or early embryo with up to 8 blastomeres. | | | | Zygote/Embryo is transferred into the fallopian tube. | | | | IUT - Intra Uterine Transfer | | | | Embryo transfer with more than 8 blastomeres. | | | | Embryo is transferred into the uterus. | | | | b) Helpful to get rid of unwanted pregnancies either due to casual unprotected | | | | intercourse or failure of the contraceptive used during coitus or rapes. | | | | If continuation of the pregnancy could be harmful or even fatal either to the mother or | | | | to the foetus or both. | 1 + 2 = 3 | | | to the foctus of conf. | 1 + 2 - 3 | | 18. | a) Down's Syndrome, Trisomy of 21 / (45A + XX or 45A + XY) / 47 chromosomes | | | | b) Short statured / Furrowed tongue / mentally retarded / Palm is broad with | | | | characteristic palm crease. | 1 + 2 = 3 | | | (Any two symptoms) | | | 19. | a) – Alexander von Humboldt | | | | b) – S – Species richness | | | | C – Y -intercept | | | | A – Area | 1 + 2 = 3 | | | Z – Slope of the line / Regression coefficient | | | 20. | a) Alec Jeffreys | | | | b) VNTR – Variable Number of Tandem Repeats | 1 + 2 - 2 | | | c) Used in forensic studies / Evolutionary biology / Genetic biodiversity studies / | 1 + 2 = 3 | | | Parental dispute (Any relevant two uses) | |