

SAMAGRA PLUS

ANNUAL EXAMINATION 2025 -PRACTICE QUESTION PAPER CHEMISTRY

Time : 1.30 Hrs

STD IX

Answer any 4 questions from 1 to 5. Each question carries 1 score. (4×1)	=4)
1. The chemical and physical properties of elements are periodic functions of	of their 1
2. Which of the following is the balanced chemical equation?	T
	1
a. $Mg + O_2 \rightarrow MgO$ c. $2Mg + O_2 \rightarrow MgO$ b. $Mg + O_2 \rightarrow 2MgO$ d. $2Mg + O_2 \rightarrow 2MgO$	
3. NaCl + AgNO ₃ \rightarrow AgCl + NaNO ₃ , What type of chemical reaction is this?	1
a. Combination reaction b. Decomposition reaction	
c. Displacementl reaction d. Double decomposition	
4. Which is the correct statement regarding sugar solution?	1
a. It is a homogeneous mixture. b. It is a solid solution	T
c. The solvent in it is a solid d. It is always a saturated solution	
5. When nitrogen dioxide dissolves in rainwater, is obtained.	
	1
Answer any 4 questions from 6 to 10. Each question carries 2 score .	
	4 x 2 =8)
6. Diagrammatically represent the orbit electron $configuration of Al$	2
7. Mg (Atomic No:12) a. Write electron configuration of this Atom.	
a. Write election configuration of this Atom.	2
b. Find the period and group to which it belongs8. Solutions of ammonium chloride and sodium hydroxide are taken in a test	
and heated.	2
a. Which gas is produced? b. Why does the rate of a chemical reaction increase as temperature inc	reases?
9. Heat the boiling tube containing potassium permanganate.	2
a. Insert a burning matchstick to the mouth of the boiling tube.What is the observation?b. Which gas is obtained?	

10. Write an example for aromatic hydrocarbons	0
Write its molecular formula.	2
Answer any 4 questions from 11 to 15. Each question carries 3 score. (4 x	3 =12)
11. Electron configuration of elements P, Q, R are given. (symbols are no	ot real)
P – 2,8,6 Q – 2,8,1 R – 2,8,8 a Which is the most stable element among these?	
b. What are the valencies of the elements P and Q?	1
c. Write the chemical formula of the compound formed when P and Q co	1 mbine.
12. C + 4HNO ₃ \rightarrow \approx 2H ₂ O + CO ₂ + 4NO ₂	1
a. Find out and mark the oxidation number of carbon in this reactionb. What happens to carbon evidation or reduction?	1
b. What happens to carbon-oxidation or reduction?	1
c. What are the oxidising agents in this reaction?	1
13. Write the answers to the following questions on the preparation of chigas in the laboratory	lorine
a. What are the chemicals required to prepare chlorine gas?	1
b. Chlorine gas is collected by passing it through water. Why?	_
c. Chlorine gas is passed through concentrated sulphuric acid. Why?	1
14. If 10 g common salt is dissolved in 90 g water. Calculate the	1
concentration in terms of mass percentage?.	3
15. a. How is coal formed in nature?	1
b. Write any two uses of coal.	2

Answer any 4 questions from 16 to 20. Each question carries 4 scores $(4 \times 4 = 16)$

16. The solubilities of certain salts in a saturated solution prepared in 100 g water, at different temperatures is tabulated below.

Solute	Tem					
	10°C	20°C	40°C	60°C	80°C	
Potassium nitrate (KNO3)	21	32	62	106	167	
Sodium chloride (NaCl)	36	36	36	37	37	
Ammonium chloride (NH4Cl)	24	37	41	55	66	
a. Which salt shows the maxin	num so	olubility	at low	temper	ature?	1
b. How does solubility change	when	temper	ature i	ncrease	s?	T
c. What is the amount of solute potassium nitrate in 50 g water at 40° d. Which salt given in the table varying temperature?	C?	-				1
 17. a. What are the four crystalline allotropes of carbon? b. Which are the electrically conductive allotropes of carbon? c. Which allotrope is used as a lubricant? 18. Write two advantages and two limitations of using hydrogen as a fuel. 					1 1	
19. Molecular formula of some h $C_3H_8, C_4H_8, C_4H_{10}, C_3H_6$	nydroc	arbons	are giv	en belo [,]	w.	
a. Which among these are alkan	es?					1
b. What is the general formula o	b. What is the general formula of alkenes?					
c. Write the molecular formula o	of alky:	ne havi	ng 4 ca	rbon at	oms.	1
d. Write the name of this alkyne					1	
20. a. A cyclic hydro carbon has a molecular forfule C_6H_{12} . Draw the structure of this compound. b. Write the condensed formula of the open chain hydrocarbon having the same molecular formula.					1	
c. Give the name of these two compound.						2

Answer Key

Scoring Key Annual Exam CHEMISTRY **(ENG Medium)**

Q No SQ NQ Key point Score Score Total Score 1 - Atomic number 1 1 2 - d. 2Mg + O ₂ - 2MgO 1 1 3 - d. Double decomposition 1 1 4 - a. It is a homogeneous mixture. 1 1 5 - intric acid /HNO ₃ . 1 1 6 I Image: I	Annua	l Exa	m CHEMISTRY (ENG Medium)	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q No		Key point	Score	Total
3-d. Double decomposition1114-a. It is a homogeneous mixture.1115-nitric acid /HNO3.1116Max 4 Score27-2, 8, 2128aAmmonia12bWhen the reactants are heated, the kinetic energy of the particles increases/ the number of particles that attain the threshold energy increases/ the number of effective collisions increases (any one)129aMatchstick burns brightly oxygen12210aBenzene /naphthalene12211bP valany -2 and Q valancy - 11/2+1/23312aC 0 + 4HNO3 $\rightarrow \otimes$ 2H2O + C *4 O2 + 4NO21/2+1/23312boxidation1331313aKMnO4 and HCI13313	1	_	Atomic number	1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	_	d. $2Mg + O_2 \rightarrow 2MgO$	1	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	_		1	1
$ \begin{array}{c c c c c c c c } 5 & - & nitric acid /HNO_3. & 1 & 1 \\ \hline Max 4 Score & & & & \\ \hline Max 4 Score & & & & \\ \hline Max 4 Score & & & & \\ \hline Max 4 Score & & & & \\ \hline Max 4 Score & & & & \\ \hline Max 4 Score & & & & \\ \hline \\ & & & & \\ \hline \\ & & \\ & & \\ \hline \\ & & \\ &$	4	_		1	1
72, 8, 218aAmmonia1bWhen the reactants are heated, the kinetic energy of the particles increases/ the number of particles that attain the threshold energy increases/ the number of effective collisions increases (any one)19aMatchstick burns brightly10aBenzene /naphthalene111bCorrect structure112bCorrect structure111bP valany -2 and Q valancy - 1 $\frac{1}{\frac{1}{2} + \frac{1}{2}}$ 12aC $\frac{0}{4} + 4HNO_3 \rightarrow @_2 2H_2O + C^{*4}O_2 + 4NO_2$ $\frac{1}{\frac{1}{2} + \frac{1}{2}}$ 12boxidation1313aKMnO ₄ and HCl13	5	-	nitric acid /HNO ₃ .	1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6				2
8aAmmonia12bWhen the reactants are heated, the kinetic energy of the particles increases./ the number of particles that attain the threshold energy increases/ the number of effective collisions increases (any one)129aMatchstick burns brightly1210aBenzene /naphthalene12bCorrect structure12bCorrect structure1211bP valany -2 and Q valancy - 1 $\frac{1}{12} + \frac{1}{2}$ 312aC 0 + 4HNO3 \rightarrow \otimes 2H2O + C + 4O2 + 4NO2 $\frac{1}{2} + \frac{1}{2}$ 112boxidation13113aKMnO4 and HCl131	7				2
$ \begin{array}{ c c c c } b & When the reactants are heated, the kinetic energy of the particles increases, the number of particles that attain the threshold energy increases, the number of effective collisions increases (any one) & 1 & 2 & 1 & 1$					
$ \begin{vmatrix} a \\ b \\ b \\ correct structure \\ I \\ b \\ correct structure \\ I \\ b \\ correct structure \\ I \\ c \\ I \\ c \\ I \\ c \\ c \\ I \\ C \\ C \\ C \\ I \\ C \\ C \\ C \\ C \\ C$	8			1	2
		b	increases./ the number of particles that attain the threshold energy	1	
		a	Matchstick burns brightly	1	
$ \begin{array}{ c c c c } & Benzene /naphthalene & 1 & 2 \\ \hline b & Correct structure & 1 & 1 \\ \hline & & & \\ & &$	9	b	oxygen	1	2
Max 8 Score a R - 2,8,8 /R 1 11 b P valany -2 and Q valancy - 1 $\frac{1}{\frac{1}{2}+\frac{1}{2}}$ 3 c Q_2P 1 1 a C 0 + 4HNO3 \rightarrow \otimes 2H ₂ O + C ⁺⁴ O ₂ + 4NO2 $\frac{1}{\frac{1}{2}+\frac{1}{2}}$ 1 12 a C 0 + athnO3 \rightarrow \otimes 2H ₂ O + C ⁺⁴ O ₂ + 4NO2 $\frac{1}{\frac{1}{2}+\frac{1}{2}}$ 1 3 12 b oxidation 1 3 3 3 3 13 a KMnO4 and HCl 1 3 3 3	10	a	Benzene /naphthalene	1	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		b	Correct structure	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	Max 8 Score	1	I
$ \begin{array}{ c c c c c } & c & Q_2P & & 1 \\ a & C^{0} + 4HNO_3 \rightarrow {} 2H_2O + C^{+4}O_2 + 4NO_2 & & & & \\ 12 & b & \text{oxidation} & & 1 & & \\ b & \text{oxidation} & & 1 & & \\ c & HNO_3 & & & 1 & & \\ 13 & a & KMnO_4 \text{ and HCl} & & & 1 & 3 \end{array} $		a	R - 2,8,8 /R	1	
$ \begin{vmatrix} a \\ 12 \\ b \\ c \\ 13 \\ a \end{vmatrix} \begin{array}{c} C^{0+} 4HNO_{3} \rightarrow {} 2H_{2}O + C^{+4}O_{2} + 4NO_{2} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	11	b	P valany -2 and Q valancy - 1	1/2+1/2	3
$ \begin{bmatrix} 12 \\ b \\ c \end{bmatrix} interpretation int$		c	Q_2P	1	
boxidation13cHNO31113aKMnO4 and HCl13		a		1/2+1/2	
c HNO3 1 13 a KMnO4 and HCl 1 3	12	b	oxidation	1	3
b To remove hydrogen chloride from chlorine gas 1	13	a		1	3
		b	To remove hydrogen chloride from chlorine gas	1	

