4.		a) Both statement I and statement II are true and statement II is the correct	1	1	
		explanation of statement I	_		
5.		2	1	1	
		Answer any 8 questions from 6 to 15. Each carries 2 scores			
6.		Osmosis	1		
		Water treatment/Water movement from soil into plant roots/preservation of fish or		2	
		meat by salting/preservation of fruits by adding sugar (Candid fruits)/Pickled	1	-	
		mango/Any other correct application.			
7.		The cell reaction stops completely and no current will flow through the cell.	1+1	2	
8.	(i)	1 OR, First order	1	2	
	(ii)	s ⁻¹	1	2	
9.		Pseudo first order reactions are reactions which appear to follow higher order but	1		
		actually follow first order kinetics.		2	
		E.g.: Hydrolysis of ester OR, Inversion of cane sugar OR, Any hydrolysis reaction	1		
10.		Aryl halides are less reactive towards nucleophilic substitution reactions:			
		(i) due to Resonance effect, the C – X bond gets a partial double bond character.			
		(ii) due to the repulsion between nucleophile and electron rich benzene ring.	2 1	2	
		(iii) due to the sp ² hybridisation of the carbon atom to which halogen atom is bonded	2 x 1	2	
		in aryl halides.			
	(iv) due to the instability of phenyl cation.				
	[Any 2 reasons are required]				
11.		Fermentation of Molasses: The sugar in molasses is converted to glucose and			
		fructose, in the presence of an enzyme, invertase. Glucose and fructose undergo			
		fermentation in the presence of another enzyme, zymase to give ethanol and carbon			
		dioxide.			
		OR, the equations:	2 x 1	2	
		$C_{12}H_{22}O_{11} + H_2O \xrightarrow{invertase} C_6H_{12}O_6 + C_6H_{12}O_6$	= 2		
		Sucrose Glucose Fructose			
		$C_{6}H_{12}O_{6} - 2 C_{2}H_{5}OH + 2 CO_{2}$			
		Ethanol			

SECOND YEAR HIGHER SECONDARY MODEL EXAMINATION 2025 – ANSWER KEY

Answer Key/Value Points

Answer any 4 questions from 1 to 5. Each carries 1 score

a) Both statement I and statement II are true and statement II is the correct

SUBJECT: CHEMISTRY

b) Low atmospheric pressure

 $\frac{3}{2}$ OR, 1.5

3d⁵

b)

Sub

Qns

.

Qn.

No.

1.

2.

3.

Qn. Code: 625

Scor

е

1

1

1

Total

1

1

1

12.		Column - I	Column – II		
		i) Conversion of phenol to salicylic acid	b) Kolbe's reaction		
	ii) Reaction of alkyl halide with sodium c) Williamson's synthesis			4 x ½	
		alkoxide	-,		2
		iii) Manufacture of phenol	d) Cumene		2
		iv) Conversion of ketone to 2 ⁰ alcohol	a) Grignard reagent		
13.		2,4,6-Trinitrophenol OR, Picric acid OR,	он		
			O ₂ N NO ₂		
				2	2
			NO ₂		
14.		<i>Rosenmund reduction</i> : Acid chlorides react with hydrogen in presence of palladium			
	(Pd) supported on barium sulphate (BaSO ₄), we get aldehydes. This reaction is called				
		Rosenmund reduction.			
		OR, R-COCI + H ₂ $\xrightarrow{\text{Pd/BaSO}_4}$ R-CHO + HCI			
		0		2	2
		П С СНО			2
		$Cl \longrightarrow H_2$			
		OR, Pd - BaSO ₄			
		(Benzoyl chloride) (Benzaldehyde)			
		OR, Any other example.			
15.		$CH_3CH_2NH_2$ is more basic than $C_6H_5NH_2$.		1	
		This is due to the electron releasing inductive effect (+I effect) of CH ₃ CH ₂ - group.		1	2
		OR, In $C_6H_5NH_2$, the lone pair of electrons is in conjugation with the benzene ring. So			2
		it is less available for protonation. OR, due to the electron withdrawing inductive effect of $-C_6H_5$ (phenyl) group.			
			rom 16 to 26. Each carries 3 scores	1 1	
16.	(i)	Since the solute is non-volatile, the vapour			
		of the pure solvent. So the freezing point is	also lower than that of the pure solvent.	1	
		OR, due to depression of freezing point.			
	(ii)	Here $w_2 = 1.00 \text{ g}$, $w_1 = 50 \text{ g}$, $\Delta T_f = 0.40 \text{ K}$, $K_f = 5.12 \text{ K kg mol}^{-1}$, $M_2 = ?$			
		We know that $\Delta T_f = \frac{1000 \text{ K}_f \text{ w}_2}{\text{w}_1 \text{ M}_2}$ OR, $M_2 = \frac{1000 \text{ K}_f \text{ w}_2}{\text{w}_1 \Delta T_f}$		1	3
		On substituting in the above equation, we g			
		$M_2 = \frac{1000 \times 5.12 \times 1}{50 \times 0.40} = \frac{256 \text{ g}}{2}$	<u>mol⁻¹</u>	1	
17	(:)				
17.	(i)	Lead storage battery – Secondary battery		1 v 1/	
	Mercury cell - Primary battery			$4 \times \frac{1}{2}$ = 2	
		Nickel-Cadmium cell – Secondary battery Dry cell – Primary battery			3
	(ii)				Ŭ
	()	1. They work continuously as long as the reactants (fuels) are supplied.			
		2. They are highly efficient.		1	

		3. They are eco-friendly				
		4. Water obtained from $H_2 - O_2$ fuel cell can be used for drinking. [Any 1 required]				
18.	(i)	Catalyst lowers the activation energy of a reaction. OR, A catalyst provides a new		1		
		path for the reaction by lowering the activation energy.				
	(ii)	We know that, $\log \frac{k_2}{k_1} = \frac{E_a}{2.303 \text{ R}} \frac{T_2 - T_1}{T_1 T_2}$				
		Here $T_1 = 500 \text{ K}$, $k_1 = 0.02 \text{ s}^{-1}$, $T_2 = 700 \text{ K}$, $k_2 = 0.07 \text{ s}^{-1}$ and $R = 8.314 \text{ J} \text{ K}^{-1} \text{ mol}^{-1}$			2	
					3	
		$\log \frac{0.07}{0.02} = \frac{E_a}{2.303 \times 8.314} \frac{700 - 500}{500 \times 700}$		1		
		$E_{a} = \frac{0.5440 \times 2.303 \times 8.314 \times 500 \times 700}{200} = 18228 \text{ J mol}^{-1} = 18.228 \text{ kJ mol}^{-1}$				
		E _a = = 18228 J mol ⁻ = 18.228 KJ mol ⁻				
19.		A is Sodium chromate (Na ₂ CrO ₄)		1		
		B is Sodium dichromate (Na ₂ Cr ₂ O ₇)		1	3	
		C is Potassium dichromate (K ₂ Cr ₂ O ₇)		1		
20.	(i)	Due to the presence of large number of unpaired electrons/strong metallic				
		bonding/high effective nuclear charge/part				
	()	variable oxidation state. [Any one reason reas			3	
	(ii)	Due to the presence of partially filled d-orb	oitals/d-d transition/electronic excitation	1		
	(iii)	from lower d-orbital to higher d-orbital.		1		
21.	(ii)	Due to Lanthanoid contraction/similar atomic radii/similar properties.		1		
21.	(1)	[Co(NH ₃) ₅ SO ₄]Cl IUPAC name – Pentaamminesulphatocobalt(III)chloride		1	3	
	(ii)	Co-ordination number = 6		1	•	
22.	(i)	d ² sp ³ hybridisation		1		
	(ii)	Inner orbital complex		1	3	
	(iii)	Diamagnetic		1		
23.	(i)	CH ₃ CH ₂ CH ₂ I (1-Iodopropane)		1		
	(ii)	CH ₃ CH ₂ CH ₂ Cl (1-Chloropropane)		1	3	
	(iii)	CH ₃ CH ₂ CH ₂ CH ₂ Br (1-Bromobutane)		1		
24.	(i)	Br ₂ /red P		1		
	(ii)	DIBAL-H/H ₂ O		1	3	
	(iii)	Zn-Hg/HCl		1		
25.	(i)	p-Hydroxyazobenzene		1	_	
	()	It is used as a dye.		1	3	
26	(ii)	Coupling reaction	2014	1		
26.		DNA DNA is double stranded RN	RNA			
			NA is single stranded ne pentose sugar is ribose	3 x 1	3	
			ne nitrogen bases are Adenine,		J	
			uanine, Cytosine and Uracil.			
Answer any 4 questions from 27 to 31. Each carries 4 scores						
27. (i) Non-ideal solutions.						
27.		There are two types of non-ideal solutions.		1/2	4	

	(ii)	Negative deviation.		1	
	(")	Here the solute-solvent interactions (A-B interactions) are stronger than solute-			
		solute interaction (A-A interaction) and solvent-solvent interaction (B-B interaction).			
	(:::)	The vapour pressure – composition graph for such a solution is:			
	(iii)	The vapour pressure composition graph for such a solution is: $ \begin{array}{c} $			
20	(-)				
28.	(i)	It is the molar conductivity of an electrolyte	at zero concentration or infinite dilution.	1	
	(ii)	Kohlrausch's law.	of an alastrolyta is the sum of the	1 1	
		It states that the limiting molar conductivity of an electrolyte is the sum of the individual contributions of the anion and the cation of the electrolyte			
		individual contributions of the anion and the cation of the electrolyte. OR, For an electrolyte like A_xB_y which dissociates as: $A_xB_y \rightarrow xA^{y+} + yB^{x-}$			4
		$\Lambda^{0}_{\mathbf{m}_{(A_{x}\mathbf{B}_{y})}} = \mathbf{x}. \ \lambda^{0}_{(A^{y+})} + \mathbf{y}. \ \lambda^{0}_{(B^{x-})}$			4
	(:::)	$\Lambda^{0}_{m_{(CaCl_{2})}} = \lambda^{0}_{(Ca^{2+})} + 2 \times \lambda^{0}_{(Cl^{-})}$			
	(iii)			1/2 1/2	
29.	(1)	$= 119.0 + 2 \times 76.3 = 271.6 \text{ S cm}^2 \text{ mol}^{-1}$			
29.	(i)	Linkage isomerism arises in a complex due to the presence of ambidentate ligand,		1	
		which can bind to the central atom through more than one donor atoms. E.g.: $[Co(NH_3)_5(NO_2)]Cl_2 \& [Co(NH_3)_5(ONO)]Cl_2 OR$, any other correct example.			
	(::)		ciz on, any other correct example.	1	
	(ii)	Geometrical isomers of [Pt(NH ₃) ₂ Cl ₂] are:			4
		$CI \sim NH_3$ $CI \sim NH_3$		2	
		Cl NH3 NH3	CI	-	
		cis trans			
30.	(i)				
	.,	S _N 1 Reaction	S _N 2 Reaction		
		Proceeds in two steps	Proceeds in a single step	2	
		An intermediate (carbocation) is formed	No intermediate is formed		
		Order of the reaction is 1	Order of the reaction is 2		
		For optically active compounds, the	For optically active compounds, the		4
		reaction proceeds through racemisation.	reaction proceeds through inversion of		
		configuration. The order of reactivity of alkyl halide is The order of reactivity of alkyl halide is			
		$3^{\circ} > 2^{\circ} > 1^{\circ}$	$1^{\circ} > 2^{\circ} > 3^{\circ}$		
		[Any 2 required]		1	

	(ii)	CH ₃ -CH ₂ -CHBr-CH ₃ + KOH _(alc) → CH ₃ -CH ₂ -CH=CH ₂ + CH ₃ -CH=CH-CH ₃ (2-Bromobutane) (But-1-ene) (But-2-ene) Major product is CH ₃ -CH=CH-CH ₃ (But-2-ene)	1	
31.	(i) Aldol Condensation Reaction: Aldehydes and ketones having at least one α -hydrogen atom when heated with dilute alkali, we get α , β -unsaturated aldehyde or ketone.			
	 2 CH₃-CHO <u>dil. NaOH</u> CH₃-CH=CH-CHO Ethanal Δ But-2-enal Or, any other correct example. (ii) Cannizzaro Reaction: Aldehydes having no α-hydrogen atom, when treated with conc. alkali, undergo disproportionation to form one molecule of the alcohol and one molecule of carboxylic acid salt. 2 HCHO <u>conc. KOH</u> CH₃-OH + H-COOK Formaldehyde methanol potassium formate Or, any other correct example. 		2	4

##