CHEMISTRY ANSWER KEY

SSLC Exam 2025

- 1. Which of the given compounds is a mineral of Aluminium? Answer: Cryolite
- 2. Which polymer is formed from isoprene? Answer: Natural rubber (or Polyisoprene)
- 3. Find the total number of atoms in 2 GMM water (H₂O). Answer:
 - 1 molecule of H₂O contains 3 atoms (2 Hydrogen + 1 Oxygen)
 - \circ 2 GMM = 2 × 6.022 × 10²³ molecules = 1.2044 × 10²⁴ molecules
 - Total atoms = $1.2044 \times 10^{24} \times 3 = 3.6132 \times 10^{24}$ atoms
- Which is the product obtained when SO₃ gas is dissolved in concentrated sulphuric acid? Answer: Oleum
- Many of the metals in _____ block are used as catalysts in petroleum industry. Answer: d-block
- 6. Classify the following compounds into alkanes, alkenes and alkynes: Compounds: C₂H₄, C₅H₁₂, C₃H₈, C₇H₁₂
 Answer:
 - Alkanes: C₅H₁₂ (Pentane), C₃H₈ (Propane)
 - Alkenes: C₂H₄ (Ethene)
 - Alkynes: C₇H₁₂ (Heptyne)
- 7. Two gases Oxygen and Nitrogen at STP are given:(a) Calculate the number of molecules in 64 g of Oxygen.
 - Molecular mass of O₂ = 32
 - Number of moles = 64 / 32 = 2 moles
 - Molecules = 2 × 6.022 × 10²³ = 1.2044 × 10²⁴ molecules

(b) Calculate the mass of Nitrogen having the same volume as that of 64 g of Oxygen.

- 64 g of O₂ = 2 moles = 2 × 22.4 L = 44.8 L (at STP)
- 44.8 L of N₂ = 2 moles (since 1 mole = 22.4 L)
- Mass of N₂ = 2 × 28 = **56 g**
- 8. 8. Two reactions related to extraction of metals are given. Identify calcination and roasting.

(a) Cu₂S ore is converted to Cu₂O by heating.

This is **Roasting** (as it involves heating of sulphide ore in presence of oxygen).

(b) Carbonates and hydroxides of metals decompose to form their oxides.

This is **Calcination** (as it involves heating in absence of air).

9. 9. Identify A and B.

(a) CH₃OH + CO → (catalyst) → (A)
This forms CH₃COOH (Acetic acid)
A = CH₃COOH

(b) CHCl₃ + Cl₂ → (B) + HCl
This forms CCl₄ (Carbon tetrachloride)
B = CCl₄

10.10. The chemical formula of a compound is C_2H_6O .

(a) Write the structural formula of any one of the functional isomers. Two functional isomers: Ethanol: CH_3 – CH_2 –OHDimethyl ether: CH_3 –O– CH_3

(b) Write the IUPAC name of this functional isomer.If ethanol: EthanolIf dimethyl ether: Methoxymethane

11. Copper is electroplated on an iron bangle.

(a) Which electrolyte is used here? Copper sulphate (CuSO₄) solution

(b) Write any one of the advantages of electroplating.

Improves appearance / Prevents corrosion / Increases durability

(c) Does the intensity of colour of electrolyte change during this process? Why?

Yes, the intensity decreases because **Cu²⁺ ions are deposited on the iron** and their concentration in the solution reduces.

12. Subshell electronic configuration of element 'A' is given.

- (i) 1s² 2s² 2p⁶ 3s² 3p⁶ 3d²
- (ii) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s²
- (a) Which is the correct subshell electronic configuration? Why? (ii) is correct

Because 4s orbital is filled before 3d orbital.

(b) Identify the block in the periodic table to which this element belongs.

Ends in $4s^2 \rightarrow s$ -block

13. Two reversible reactions are given:

(I) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g) + Heat$

(II) $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) + Heat$

(a) Identify the reaction in which pressure has no effect.

Reaction I (equal number of moles of gas on both sides \rightarrow pressure has no effect)

(b) How do the following factors influence the amount of product in Reaction II?

(i) Increase the temperature

Decreases the amount of SO_3 (forward reaction is exothermic, heat opposes forward direction)

(ii) Increase the pressure

Increases the amount of SO₃ (forward reaction has fewer gas molecules)

14. (a) Which types of reactions are these?

- (i) Addition reaction
- (ii) Polymerisation reaction

(b) Identify the product in the reaction (ii) and write any one use of it. Product: Polyvinyl chloride (PVC)

Use: Used in making pipes, wires, cables, synthetic leather, etc.

15.

Volume and number of molecules of gases at 27°C and 2 atm:

Gas	Volume (L)	Number of molecules	
Nitrogen	10	x	
Carbon dioxide	(i) 20	2x	
Oxygen	5	(ii) 0.5x	

(a) Complete the table.

Use Avogadro's Law: Equal volumes of gases at same temp & pressure have equal number of molecules.

If 10 L = x molecules,

Then:

 $CO_2 = 20 L \rightarrow 2x$ molecules

 $O_2 = 5 L \rightarrow 0.5x$ molecules

(b) What will be the volume of carbon dioxide gas if pressure is increased to 4 atm?

At constant T and n, $P_1V_1 = P_2V_2$ $P_1 = 2 \text{ atm}$, $V_1 = 20 \text{ L}$ $P_2 = 4 \text{ atm}$ $V_2 = (P_1 \times V_1) / P_2 = (2 \times 20) / 4 = 10 \text{ L}$

16. Manganese (Mn) is an element that belongs to d block in the periodic table.

(a) Outer subshell electronic configuration of Mn is 3d54s23d54s2. Find the atomic number of Manganese.

Answer: Atomic number = 25

(b) Find the oxidation state of Mn in Mn₂O₇. Answer: +7

(c) Write period number and group number of Manganese. Answer: Period = 4, Group = 7

(d) Write the subshell electronic configuration of Mn⁴⁺ ion. Answer: $1s^22s^22p^63s^23p^63d^3$

17.A few drops of the solution 'X' is added to Magnesium sulphate solution taken in a test tube. A white precipitate is formed.

(a) What is 'X'? Answer: BaCl₂

(b) What is the chemical name of white precipitate formed here? Answer: Barium Sulphate (BaSo₄)

(c) What happens to the white precipitate when dilute hydrochloric acid is added? Answer: It doesn't Dissolve

(d) Which type of salt is identified by this experiment?Answer: sulphate

18. Three metals Ag, Mg, Cu and their salt solutions are given.

(a) How many galvanic cells can be constructed using these metals? From 3 metals, possible pairs = 3C2 = 3 galvanic cells

(b) If we construct a galvanic cell using the most reactive metal and the least reactive metal from the given metals, identify the cathode and anode.

Reactivity order: Mg > Cu > AgAnode = Mg (most reactive \rightarrow oxidized) Cathode = Ag (least reactive \rightarrow reduced)

(c) Write the chemical equation of the reaction which takes place at anode and cathode in the above cell.

At Anode (Mg): $Mg \rightarrow Mg^{2+} + 2e^{-}$ At Cathode (Ag): $Ag^{+} + e^{-} \rightarrow Ag$ (But since two electrons come from Mg, it would be: $2Ag^{+} + 2e^{-} \rightarrow 2Ag$) Overall cell reaction: $Mg + 2Ag^{+} \rightarrow Mg^{2+} + 2Ag$

19.(a) Write the name and chemical formula of ore of iron used in industrial production.

Name: Haematite Formula: Fe₂O₃

(b) Write the chemical equation of slag formation in the industrial production of iron.

 $CaO + SiO_2 \rightarrow CaSiO_3$ (slag)

(c) Which mineral of iron is known as fool's gold? Iron pyrite or FeS₂

(d) Write the names of two alloy steels which contain the same constituent elements.

Stainless steel and **Tungsten steel** (both contain Fe, C, and other metals like Cr, W, etc.)

A (Structure)	B (Molecular Formula)	C (Name)
1. CH ₃ –CH–CH–CH ₃ (CH ₃ on both C2 and C3)	C ₆ H ₁₄	2,3-Dimethylbutane
2. CH ₃ CH=CH-CH ₃	C ₄ H ₈	But-2-ene
3. CH ₃ CH(OH)CH ₃	C₃H ₈ O	Propan-2-ol
4. CH ₃ CH ₂ CH ₂ COOH	C ₅ H ₁₀ O ₂	Pentanoic acid

20.