

since p-6q/q is a rational number, therefore, $\sqrt{2}$ is a rational number. But, it is a contradiction. Hence, $6 + \sqrt{2}$ is irrational. Hence, proved. 19. we have $2x+y=10 \rightarrow (1)$ and $x-y=2 \rightarrow (2)$ By elimination method 2x+y=10x-y=2by subtracting above two we get x=4Put this x value in any one of the above equation we get y=220. Given equation is $x^2+8x+12=0$. Factors of 12 is 6 and 2 $x^{2}+8x+12=0$ $x^{2}+6x+2x+12=0$ x(x+6)+2(x+6)=0(x+6) = 0 or x+2=0x = -6 or x = -2OR $x^{2}+4x+5=0$ a=1, b=4 and c=5 $\Delta = b^2 - 4ac$ $= 4^2 - 4x1x5$ = 16-20= -4There is No roots 21. Here a=5, d=4 and n=20 We are going to find S_{20} We know $S_n = \frac{n}{2} \{2a + (n-1)d\}$ $S_{20} = \frac{20}{2} \{2x5 + (20 - 1)4\}$ $=10\{10 + (19)4\}$ =10x86=860.22. Measure of $AOB = 120^{\circ}$, and length of PB= 4cm (tangents are same) 23. Given that $40=x^{y}z$ $2x2x2x5 = 2^{3}x5$ Therefore x=2, y=3 and z=524. Coordinates of BD = Coordinates of ACBy midpoint formula, $(\frac{7}{2}, 4) = (\frac{1+x}{2}, \frac{6+y}{2})$ Therefore x = 6 and y = 2**IV. Answer the following questions** 3x9=2725. we have $p(x) = x^2 + 7x + 10$ $x^{2}+5x+2x+10$

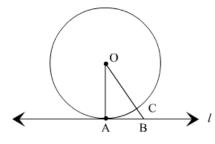
$$x(x+5)+2(x+5)$$

(x+5) (x+2)
Two zeroes are x=-2 and x=-5
 α =-2 and β =-5

verification:

And we know
$$\alpha + \beta = \frac{-b}{a}$$
 and $\alpha\beta = \frac{c}{a}$
 $\alpha + \beta = \frac{-(-7)}{1}$ and $\alpha\beta = \frac{10}{1}$
 $7 = 7$ and $10 = 10$ hence verified

26.



Given: a circle C(0, r) and a tangent 1 at point A. To prove: $OA \perp 1$ Construction: Take a point B, other than A, on the tangent 1. join OB. Suppose OB meets the circle in C. Proof: In figure OA=OC (Radius of the same circle) Now, OB=OC+BC. \therefore OB>OC \Rightarrow OB>OA \Rightarrow OA<OB Thus, OA is shorter than any other line segment joining O to any point on 1. Here OA $\perp 1$.

27.

$$= \frac{(1+\sin A)^2 + \cos^2 A}{\cos A(1+\sin A)}$$
$$= \frac{1+\sin^2 A + 2\sin A + \cos^2 A}{\cos A(1+\sin A)}$$
$$= \frac{1+2\sin A+1}{\cos A(1+\sin A)}$$
$$= 2\sec A$$

OR

MATHEMATICS

we have
$$\frac{5\cos^2 60 + 4\sec^2 30 - \tan^2 45}{\sin^2 30 + \cos^2 30}$$
$$= \frac{5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}$$
$$= \frac{5 \times \left(\frac{1}{2}\right)^2 + 4 \times \left(\frac{2}{\sqrt{3}}\right)^2 - 1}{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \frac{\frac{5}{4} + 4 \times \frac{4}{3} - 1}{\frac{1}{4} + \frac{3}{4}}$$
$$= \frac{\frac{5}{4} + \frac{16}{3} - 1}{\frac{\frac{4}{4}}{4}} = \frac{15 + 64 - 12}{12} = \frac{67}{12}.$$

28. Given that $r=21 \text{ cm } \Theta = 60^{\circ}$.

Area of the sector AOB= $\frac{\theta}{360^0} x \pi r^2$

= 231 sq cm

Now area of the Segment APB= Ar of sector AOB- Ar of triangle ABO.

= 231- Ar of an equilateral triangle

$$= 231 - \frac{\sqrt{3}}{4} \times 21 \times 21$$

= 231 - 190.73
= 40.27 sq cm.

29. Coordinates of (-1, 7) and (4, -3) in the ratio 2:3

By section formula

$$(\mathbf{x}, \mathbf{y}) = \left[\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\right]$$
$$(\mathbf{x}, \mathbf{y}) = \left[\frac{2(4) + 3(-1)}{2 + 3}, \frac{2(-3) + 3(7)}{2 + 3}\right]$$
$$= \left[\frac{8 - 3}{5}, \frac{-6 + 21}{5}\right]$$
$$= \left[\frac{5}{5}, \frac{15}{5}\right]$$
$$= \left[1, 3\right]$$
OR

Let point P (x, y) be <u>equidistant</u> from points A (3, 6) and B (- 3, 4). Since they are equidistant, PA = PB Hence by applying the distance formula for PA = PB, we get $\sqrt{(x - 3)^2 + (y - 6)^2} = \sqrt{(x - (-3))^2 + (y - 4)^2}$ $\sqrt{(x - 3)^2 + (y - 6)^2} = \sqrt{(x + 3)^2 + (y - 4)^2}$ By <u>squaring</u>, we get PA² = PB² $(x - 3)^2 + (y - 6)^2 = (x + 3)^2 + (y - 4)^2$ $x^2 + 9 - 6x + y^2 + 36 - 12y = x^2 + 9 + 6x + y^2 + 16 - 8y$ 6x + 6x + 12y - 8y = 36 - 16 [On further simplifying] 12x + 4y = 203x + y = 5

$$3x + y - 5 = 0$$

Thus, the relation between x and y is given by 3x + y - 5 = 0

30.

Class interval	Frequency	
10-20	2	
20-30	3	
30-40	6	
40-50	5	
50-60	4	
	N=20	

Solution: We have formula by direct method, mean $\bar{x} = \frac{\sum fx}{n}$

C.I	f	x (midpoint of C.I)	fx
10-20	2	15	30
20-30	3	25	75
30-40	6	35	210
40-50	5	45	225
50-60	4	55	220
	N=20		$\sum fx = 760$

mean $\bar{x} = \frac{\sum fx}{n}$

 $=\frac{1/200}{200}$

1ean= 38.

		OR		
C.I	f	cf		
15-20	4	4		
20-25	5	9		
25-30	10	<mark>19</mark>		
30-35	5	24		
35-40	6	30		
	N=30			
n/2=15, f=10, cf=9 and h=5				
Median= $1 + \left\{ \frac{\frac{n}{2} - fc}{f} \right\} xh$				
Median= $25 + \left\{ \frac{15-9}{10} \right\} x 5$				
$=25+\frac{6}{10}x5$				
= 25 + 3				
Median = 28				

31. We have cards from 1 to 20 = 20 = n(S)

i)A perfect square numbers, means = 1, 4, 9, 16 = 4 = n(E)

Probability is $P(E) = \frac{n(E)}{n(S)} = \frac{4}{20} = \frac{1}{5}$

ii)A number which is divisible by both 2 and 3, means = 6, 12, 18=3=n(E)

MATHEMATICS

Probability is
$$P(E) = \frac{n(E)}{n(S)} = \frac{3}{20}$$

32.

SSLC-2025

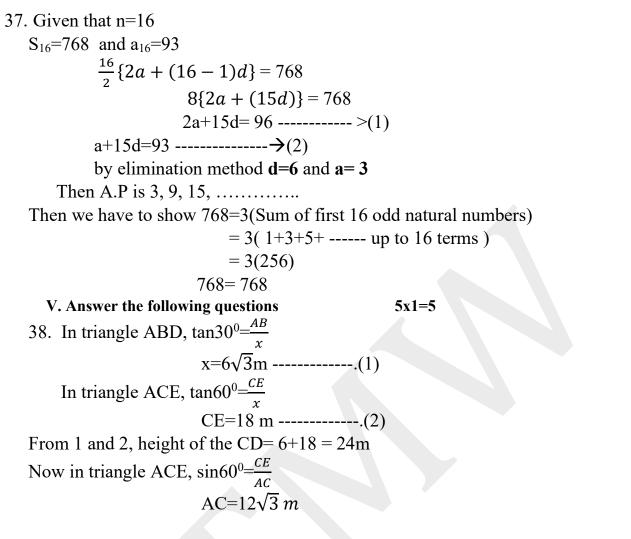
Let base of the triangle be = x and height is = 5+xAccording to question If its area is 150. $\frac{1}{2}x(5+x) = 150$ $5x+x^2=300$ $x^{2}+5x-300=0$ $x^{2}+20x-15x-300=0$ (x+20)(x-15) = 0x=-20 and x=15 therefore positive base of triangle is 15cm and height is 20cm. OR Let the two positive even consecutive numbers be x and x+2By question $x^{2}+(x+2)^{2}= 164$ $x^{2}+2x-80=0$ $x^{2}+10x-8x-80=0$ (x+10)(x-8) = 0x=-10 and x=8 consider positive number then two numbers are 8 and 10. 33. Given: Two lines AB and CD such that AC || BD To Prove : $\triangle AOB \sim BOD$. Proof: In the figure, AB intersects CD at O. Then draw $\lfloor AOC = \lfloor BOD (V.O.A) \rfloor$ AC is parallel to BD $\lfloor CAB = \lfloor ABD (V.O.A) \rfloor$ Hence $\triangle AOB \sim BOD$ V. Answer the following questions 4x4=16 34. We have x+2y=8For this we should have to find some solutions If x=0, then y=4, and y=0, then x=8Similarly for x+y=5, if x=0, then y=5, if y=0 then x=5. Tables are 0 8 х 4 0 v And u 0 5 х 5 0 V Then by graphical method _2 _3 0 x=2 and y=3

EXAM-01

MATHEMATICS

Let **ABC** be the triangle. The line l parallel to BC intersect AB at D and AC at E. To prove: $\frac{DB}{AD} = \frac{CB}{AE}$ Join **BE**,**CD** Draw EF₁AB, DG₁CA Since **EF**⊥**AB**, **EF** is the height of triangles **ADE** and **DBE** Area of $\triangle ADE = 1/2 \times base \times height = 1/2 \times AD \times EF$ Area of $\triangle DBE = 1/2 \times DB \times EF$ $\frac{areaof\Delta DBE}{areaof\Delta ADE} = \frac{1/2 \times DB \times EF}{1/2 \times AD \times EF} \times = \frac{DB}{AD}$(1) areaof ΔADE Similarly, $\frac{areaof\Delta DBE}{areaof\Delta ADE} = \frac{1/2 \times CB \times EF}{1/2 \times AE \times EF} \times = \frac{CB}{AE}$(2) But **ADBE** and **ADCE** are the same base **DE** and between the same parallel straight line **BC** and **DE**. Area of ΔDBE = area of ΔDCE(3) From (1), (2) and (3), we have DB CB AD AE Hence proved. Given that cylinder, R=60cm, H=120cm Cone, r=60cm, h=120-60 = 60cmHemisphere r=60cm Now volume of water left in the cylinder in terms of π is = vol of cylinder – (vol.of cone+vol.hemishpere) $=\pi R^{2}H - (\frac{1}{3}\pi r^{2}h + \frac{2}{3}\pi r^{3})$ $= 432000\pi - 216000\pi$ $= 216000\pi$ cubic cm.

36.



Note: This key answers not by board, its prepared by me.

Shiva.T, Maths teacher M.sc, B.Ed, MMDRS HARAPANAHALLI TOWN Vijayanagara Dist Mobile No.99161429.

For more Maths materials like this, Join our whatsapp group by

clicking here: https://chat.whatsapp.com/IJfgDgGJbk76gu8WKmnRTD

For Detailed solutions all above, watch my youtube channel: Shiva the mathematical world.

Link is here: https://youtu.be/yuQXEuAk3uk?si=CIq0jrE8LwdduEN0