FIRST YEAR HSS EXAM – 2025

Botany - Answer Key

HSE I		Total marks – 30		
Category	Questi on No:	Answer key / Value points	Split score	Total score
Part I	<u> </u>	Answer any 3 questions from 1 - 5 Each carries 1 mark		
	1.	a/ Chrsophytes	1	1
	2.	Floridean starch	1	1
	3.	Reticulate	1	1
	4.	Zygotene	1	1
	5.	Log phase / Exponential phase	1	1
Part II		Answer any 9 questions from 6 - 16. Each carries 2 mark		
	6.	Phycobiont - Algal partner in lichens Mycobiont - Fungal partner in lichens	1+1	2
	7.	Chlamydomonas – Algae Cycas - Gymnosperm Selaginella - Pteridophytes Sphagnum - Moss	½ x 4	2
	8.	 i. (A) – Subsidiary cell (B) – Guard cell ii. Stomatal pore, guard cells & subsidiary cells together known as Stomatal apparatus. 	½ x 2 1	2
	9.	 (A) – Closed vascular bundle Parts - 1 – Phloem 2 – Xylem (B) - Open vascular bundle Part- 3- Cambium 	¹ / ₂ ¹ / ₄ x 2 ¹ / ₂ ¹ / ₂	2
	10.	 a. Fluid Mosaic Model b. Lipid / Protein / Carbohydrate (any 2) c. Transport of some molecules across it (Membrane is selectively permeable)/ Cell growth / Formation of intercellular junctions / Secretion / Endocytosis / Cell division. (any 1) 	½ ½ x 2 ½	2
	11.	 a. Cristae –Cristae infoldings of inner mitochondrial membrane .All others are parts of chloroplast . b. Fimbriae - Small bristle like fibres sprouting out of prokaryotic the cell .All others are parts of chromosome 	½x 2 ½ x 2	2
	12.	Ribulose -1,5-biphosphate CO_2 acceptor in dark reaction	1+1	2
	13.	 a. Photorespiration b. Photo respiration is the metabolic pathway occurs in the presence of light in which O₂ is consumed & CO₂ is 	1 ½ x 2	2

		released / There is no synthesis of ATP & NADPH (energy)		
		, and glucose formation but ATP is utilised / RuBP		
		combines with O_2 to form 1 molecule of 3PGA & 1		
	ĺ	molecule of phosphoglycolate, when, O_2 concentration is	,	
	ĺ	more than that of CO ₂ , Enzyme RuBisCO catalyse this		
	ĺ	reaction/ Correct equation (any 2 point)		
	14.	a. Acetyl CoA	1+1	2
	ĺ	b. Pyruvate dehydrogenase	-	-
	15.	a. Internode elongation before flowering in beet, cabbage	1+1	2
	ĺ	etc		-
		b. Gibberellin		
	16.	a. Auxin	1	2
		b. Apical dominance / Inhibition of growth of lateral buds by		1
	ĺ	the terminal bud / Initiate rooting in stem cutting		
	ĺ	/Promote flowering in pineapple /Prevent fruit & leaf	½ x 2	
	ĺ	drop at early stages but promote the abscission of older	//	
	ĺ	mature leaves & fruits /Induce Parthenocarpy. eg., in		
		tomatoes / Weedicide (2,4-D used to kill dicot weeds, &		
		does not affect monocot plants) / 2,4-D used to prepare		
	ĺ	weed-free lawns by gardners / Auxin control xylem		
	ĺ			
D 111		differentiation & helps in cell division (any 2 response)		+
Part III	17	Answer any 3 questions from 17 - 20. Each carries 3 scores	1/ 2	+
	17.	a. (A) Cymose (B) Racemose	½ x 2	3
	ĺ	b. Racemose inflorescence - main axis continues to grow / unlimited growth (Flowers horne laterally in an Agrometal)		
	ĺ	unlimited growth / Flowers borne laterally in an Acropetal	I ½ x 4	
	ĺ	succession / Younger flowers at tip and older flowers at		
	ĺ	bottom Company influences of Main avia terminates in a flavor		
	ĺ	Cymose inflorescence :- Main axis terminates in a flower		
	ĺ	/ limited growth/ Flowers borne in a Basipetal succession		
	ĺ	/ Younger flowers at bottom and older flowers at tip		
		(any 2 difference)		
	18.	a. Anaphase	1/2	3
	ĺ	b. Centromere split/ Sister chromatids separate / Sister	½ x 2	
	ĺ	chromatids move towards opposite poles. (any 2 point)		
	ĺ	c. Cell growth / Cell repair / Maintenance of nucleo-		
		cytoplasmic ratio /Regeneration (any 3 point)	½ x 3	
	19.	a. (A) – Mesophyll cell (B) – Bundlesheath cell	½ x 2	3
	ĺ	b. First stable compound (First CO_2 fixation product) is 4-C	1/2	
	ĺ	compound (C4 acid)		
	ĺ	c. C ₄ plants – Lack photorespiration / Better productivity		
1	(½ x 3	!
	(and yield / Tolerance to high temperature / Show	1 /2 ^ J	
		response to high light intensities (any 3 response)		

b.	(A) – Glucose 6- phosphate. (B) 3 PGAL (3-	¼ x 4
	Phosphoglyceraldehyde) (C) - 2- phosphoglyceric acid (2 PGA) (D) – PEP (Phospho enol pyruvic acid)	
c.	Alcoholic fermentation by microorganisms and yeast / Pyruvic acid reduced to ethanol and CO_2 in the cells of	
	microorganisms /	½ x 3
	Lactic acid fermentation in muscle cells / Pyruvic acid reduced to lactic acid in muscle cells	
	Aerobic respiration / Pyruvic acid Oxidatively	
	decarboxylated to acetyl CoA and enter into aerobic respiration	

MBIA