FIRST YEAR HIGHER SECONDARY EXAMINATION MARCH 2025 – ANSWER KEY

(UNOFFICIAL) SUBJECT: CHEMISTRY Qn. Code: FY 325

Qn.	Sub	Anguran Kay A /- live Deinte	Scor	Tot
No.	Qns	Answer Key/Value Points	e	al
		Answer any 4 questions from 1 to 5. Each carry 1 score		
1.		В	1	1
2.		(d) Cl _(g)	1	1
3.		(a) Both statement I and II are true and statement II is the correct explanation of statement I .	1	1
4.		OH ⁻	1	1
5.		10 σ bonds	1	1
		Answer any 8 questions from 6 to 15. Each carry 2 scores		
6.		Law of Multiple proportions states that if two elements can combine to form more than one compound, the masses of one element that combine with a fixed mass of the other element, are in the ratio of small whole numbers. Illustration: Hydrogen combines with oxygen to form two compounds – water and hydrogen peroxide. $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$	1	2
		$2g$ $16g$ $18g$ $H_2 + O_2 \rightarrow H_2O_2$ $2g$ $32g$ $34g$ Here, the masses of oxygen (i.e. 16 g and 32 g) which combine with a fixed mass of hydrogen (2g) bear a simple ratio, i.e. 16:32 or 1: 2. OR, any other correct illustration.	1	1
7.		Wave length is the distance between two adjacent crusts or troughs in a wave.	1	
		OR, Wavelength Wave length = 4 x 2.16 pm = 8.64 pm	1	2
8.		s-orbital p-orbital [Any one type of p-orbital is required]	1+1	2
9.		Column-I Column-II (i) CH4 (c) sp³ (ii) PCI5 (a) sp³d (iii) BeF2 (e) sp (iv) SF6 (b) sp³d²	4 x ½	2

10.	/;\	State function: enthalpy free energy	1	
10.	(i) (ii)	State function: enthalpy, free energy Path function: heat, work	1 1	2
11.	()	Solutions which resist the change in pH on dilution or with the addition of small		
		amount of acid or alkali are called Buffer solutions.	1	2
		E.g. An equimolar mixture of acetic acid and sodium acetate around a pH of 4.75/an		
		equimolar mixture of NH4OH and NH4Cl around a pH of 9.25/carbonic acid –	1	
		bicarbonate buffer in blood/Any other correct example.		
12.		Cl ₂ , NaClO, KClO ₂ , ClO ₂	2	2
13.	(i)	Propanone	1/2	
	(ii)	Propanal	1/2	2
		Functional group isomerism	1	
14.		CH ₃ -CHO & HCHO OR, Ethanal and Methanal OR, Acetaldehyde and Formaldehyde.		
		OR, the equation:		
		70/4.0		2
		$CH_3CH=CH_2+O_3\longrightarrow CH_3-CH$ CH_2 CH_2 CH_2 $CH_3CH=CH_2+O_3\longrightarrow CH_3-CH$ CH_3 CH		
		0 = 0		
		Propene ozonide Ethanal Methanal		
15.				
			1	
	(i)	Cyclohexane OR, OR, C_6H_{12}		
		Cl		2
			4	
	(ii)	Chlorobenzene OR,	1	
	(11)	Answer any 8 questions from 16 to 26. Each carry 3 scores		
16.	(i)	Molecular mass of CO ₂ = 12u + 32u = 44u		
		Molar mass of $CO_2 = 44 \text{ g mol}^{-1}$		
		Mass percent of carbon = $\frac{\text{Mass of carbon } \times 100}{\text{Molar mass of CO}_2}$	4.	
		<u>Z</u>	1/2	3
		$=\frac{12 \times 100}{44} = 27.27\%$	1/2	
	(ii)	(a) and (b)	2	
	. ,	OR, 20g NaOH in 200 mL of solution & 0.5 mol of KCl in 200 mL of solution.		
17.	(i)	l = 0, 1	1	
		when l = 0, m _l = 0	1/2	3
		when $l = 1$, $m_l = -1$, 0 , +1	1/2	3
	(ii)	2s and 2p	1/2+ 1/2	
18.	(i)	B and O OR, Be and N.	1/2+ 1/2	
	(ii)	This is because after the removal of one electron, Boron gets the stable fully filled	1	
		electronic configuration (1s ² 2s ²) and Oxygen gets the stable half-filled configuration	1	
		(1s ² 2s ² 2p ³).		3
		OR, Due to the stable completely filled electronic configuration of Beryllium and half-		
		filled electronic configuration of Nitrogen.		
		OR, 2p electron of boron is more shielded from the nucleus by the inner core of		

		alastana akan aka 2a alastanan akkan dibu. Eli Kirili (1911) ili kan dibu.		
		electrons than the 2s electrons of beryllium. Therefore, it is easier to remove the 2p- electron from boron.		
		In the case of oxygen atom, two of the four 2p-electrons occupy the same 2p-orbital		
		resulting in an increased electron-electron repulsion. So it loses one electron readily		
		than nitrogen.		
19.	(i)	Covalent radius is the half of the distance between two similar atoms joined by a	1	
	(.,	covalent bond in the same molecule.	_	
		OR, Covalent radius is the half of the inter nuclear distance between two covalently		
		bonded atoms in a covalent molecule.		
	(ii)	Cations are smaller than the parent atom due to the greater effective nuclear charge	1	
	` '	in cations.		3
		Anions are larger than parent atom due to the greater electronic repulsion and less	1	
		effective nuclear charge in anions.		
		OR, due to the smaller no. of electrons in cation and greater no. of electrons in anion		
		compared to the parent atom.		
20.		Significance of Dipole moment:		
	(i)	a) Dipole moment gives the polarity in a molecule.		
		b) It gives an idea about the geometry or shape of the molecule.	1	
		c) It helps to predict whether a molecule is polar or non-polar.		
		d) It helps to distinguish between cis and trans isomers.		
		e) Used to calculate the percentage ionic character in a covalent molecule.		
		[Any one required]		
				3
		\		3
		N.X		
	/::\		1+1	
	(ii)	0=c=0 ***		
		Net dipole moment = 0		
		CO ₂ NF ₃		
		[Shape of CO ₂ is linear, so its net dipole moment is zero. But NF ₃ has a pyramidal shape and		
		so it has a net dipole moment].		
21.		Here $K_p = 0.98$, $T = 298$ K, $R = 8.314$ J K^{-1} mol ⁻¹	1	
		$\Delta G^0 = -2.303 \text{ RT logK}_p$	1	
		= $-2.303 \times 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \times 298 \text{ K x log}(0.98) = 50.06 \text{ J mol}^{-1}$	1 1	3
		Since ΔG^0 is positive, the reaction non-spontaneous at this temperature.	*	
	(.)	[OR, first find out K _c and then substitute in the above equation].		
22.	(i)	Here the forward reaction is exothermic. So, low temperature favours forward	1	
		reaction.		
		Since the no. of moles of gaseous species decreases during forward reaction, high		3
		pressure favours it.	1	
	(ii)	Addition of inert gas like argon at constant volume does not affect the equilibrium.	1	
23.	()	Oxidation number method:	_	
		Step 1: The skeletal equation is: $Fe^{2+} + Cr_2O_7^{2-} + H^+ \longrightarrow Fe^{3+} + Cr^{3+} + H_2O$		
		1 227 33 32 33 32		

		Step 2: Assign oxidation number each element and identify the elements undergoing		
		change in oxidation number. +2 +6 -2 +3 +3		
		Fe ²⁺ + Cr ₂ O ₇ ²⁻ + H ⁺ \longrightarrow Fe ³⁺ + Cr ³⁺ + H ₂ O	1	
		Step 3: Calculate the change in oxidation number per atom and equate them by	_	
		multiplying with suitable number. Here the oxidation number of Cr is decreased by 3		
		and that of Fe is increased by 1. In order to equate them multiply Fe ²⁺ by 6 (since		
		there are 2 Cr atoms on LHS).		
		$6 \text{ Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + \text{H}^+ \longrightarrow \text{Fe}^{3+} + \text{Cr}^{3+} + \text{H}_2\text{O}$		
		Step 4: Now balance all the atoms except oxygen and hydrogen		
		$6 \text{ Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + \text{H}^+ \longrightarrow 6 \text{ Fe}^{3+} + 2 \text{ Cr}^{3+} + \text{H}_2\text{O}$	1	
		Step 5: Now balance the ionic charges on both sides. Here the net ionic charge on		
		LHS is +11 and on RHS is +24. To equate them add 13 more H ⁺ on LHS, since the		
		reaction takes place in acidic medium.		
		$6 \text{ Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + 14 \text{ H}^+ \longrightarrow 6 \text{ Fe}^{3+} + 2 \text{ Cr}^{3+} + \text{H}_2\text{O}$		3
		Step 6: Now balance hydrogen atoms by adding sufficient number of H ₂ O molecules.		
		Here add 6 more H₂O molecules on RHS.		
		$6 \text{ Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + 14 \text{ H}^+ \longrightarrow 6 \text{ Fe}^{3+} + 2 \text{ Cr}^{3+} + 7 \text{ H}_2\text{O}$	1	
		Now the equation is balanced.		
		OR, Half Reaction method:		
		Step-1: Assign the oxidation number of each element and find out the substance		
		oxidized and reduced.		
		+2 +6 +3 +3		
		$Fe^{2+} + Cr_2O_7^{2-} + H^+ \longrightarrow Fe^{3+} + Cr^{3+} + H_2O$	1	
		Here Fe is oxidized and Cr is reduced.		
		Step-2: Separate the equation into 2 half reactions -oxidation half reaction and		
		reduction half reaction.		
		Oxidation half: $Fe^{2+} \longrightarrow Fe^{3+}$ Reduction half: $Cr_2O_7^{2-} \longrightarrow Cr^{3+}$		
		Step-3: Balance the atoms other than O and H in each half reaction individually.		
		Oxidation half: $Fe^{2+} \longrightarrow Fe^{3+}$ Reduction half: $Cr_2O_7^{2-} \longrightarrow 2 Cr^{3+}$		
		Step-4: Now balance O and H atoms. Add H ₂ O to balance O atoms and H ⁺ to balance		
		H atoms since the reaction occurs in acidic medium. Oxidation half: $Fe^{2+} \longrightarrow Fe^{3+}$ Reduction half: $Cr_2O_7^{2-} + 14H^+ \longrightarrow 2 Cr^{3+} + 7 H_2O$		
		Step -5: Now balance the ionic charges. For this add electrons to one side of the half	1	
		reaction.		
		Oxidation half: Fe ²⁺ \longrightarrow Fe ³⁺ + e ⁻ Reduction half: Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻ \rightarrow 2Cr ³⁺ + 7H ₂ O		
		Step-6: Now add the two half reactions after equating the electrons.		
		Oxidation half: $(Fe^{2+} \longrightarrow Fe^{3+} + e^{-}) \times 6$		
		Reduction half: $(\Gamma_2O_7^{2-} + 14H^+ + 6 e^- \longrightarrow 2 Cr^{3+} + 7 H_2O) \times 1$		
		Overall reaction is: $6 \text{ Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ \longrightarrow 6 \text{ Fe}^{3+} + 2 \text{ Cr}^{3+} + 7 \text{ H}_2\text{O}$	1	
		Now the equation is balanced.	1	
		[Any one method can be used to balance this redox equation]		
24.	(i)	Inductive effect: It is a permanent effect arising due to the shifting of sigma electrons		
	(*)	through a carbon chain in presence of an atom or group of atom attached to a	1	
		carbon chain.		3
		Electromeric effect: It is the complete transfer of a shared pair of π -electrons to one		
		<u> </u>		

		of the atoms joined by a multiple bond in presence of an attacking reagent. It is a	1	
		temporary effect.		
	(ii)	Inductive effect OR, I effect	1	
25.		HH H H H (i) Eclipsed (ii) Staggered	2 x 1	3
		Staggered conformation is more stable than eclipsed form.	1	
26.	(i)	CH ₂ Br – CH ₂ Br OR, 1,2-Dibromoethane OR, Ethylene dibromide	1	
	(ii)	2-Bromopropne OR, CH₃ – CH – CH₃ OR, isopropyl bromide &	1	2
		Br		3
		1-Bromopropane OR, CH ₃ – CH ₂ – CH ₂ Br OR, n-Propyl bromide	1	
		Answer any 4 questions from 27 to 31. Each carry 4 scores		
27.	(i)	Heisenberg's uncertainty principle states that "it is impossible to determine simultaneously, the exact position and exact momentum (or velocity) of an electron."	1	
		OR, the Mathematical equation: Δx . $\Delta p \ge \frac{h}{4\pi}$		
	(ii)	OR, $\Delta x. \ m\Delta v \geq \frac{h}{4\pi}$ OR, $\Delta x. \ \Delta v \geq \frac{h}{4\pi m}$ Significance: It rules out existence of definite paths or trajectories (orbits) of electrons and other similar particles. OR, We can only say the probability of finding an electron at a given point. OR, We cannot determine the exact position and momentum of an electron. Here $\Delta x = 0.1 \ A^0 = 0.1 \ x \ 10^{-10} \ m$, $h = 6.626 \ x \ 10^{-34} \ Js$, $m = 9.1 \ x \ 10^{-31} \ kg$, $\Delta v = ?$	1	4
		We know that $\Delta x.m.\Delta v = \frac{h}{4\pi}$	1	
		So, $\Delta V = \frac{h}{4\pi \text{.m} \Delta x} = \frac{6.626 \times 10^{-34} \text{ J s}}{4 \times 3.14 \times 9.1 \times 10^{-31} \text{ kg} \times 0.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-31} \text{ kg} \times 0.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-31} \text{ kg} \times 0.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-31} \text{ kg} \times 0.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-31} \text{ kg} \times 0.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-31} \text{ kg} \times 0.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-31} \text{ kg} \times 0.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-31} \text{ kg} \times 0.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-31} \text{ kg} \times 0.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m s}^{-1}}{4 \times 3.14 \times 9.10 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m}}{4 \times 3.14 \times 9.10 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m}}{4 \times 3.14 \times 9.10 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m}}{4 \times 3.14 \times 9.10 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m}}{4 \times 3.14 \times 9.10 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m}}{4 \times 3.14 \times 9.10 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m}}{4 \times 3.14 \times 9.10 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m}}{4 \times 3.14 \times 9.10 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m}}{4 \times 3.14 \times 9.10 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m}}{4 \times 3.14 \times 9.10 \times 10^{-10} \text{ m}} = \frac{5.8 \times 10^6 \text{ m}}{4 \times 3.14 \times 9.10 \times 10^{-10} m$	1	
28.		M.O configuration of N ₂ : $\sigma 1s^2 \ \sigma^* 1s^2 \ \sigma 2s^2 \ \sigma^* 2s^2 \ \pi 2p_x^2 \ \pi 2p_y^2 \ \sigma 2p_z^2$.	1	
		M.O. configuration of Ne ₂ : σ 1s ² σ *1s ² σ 2s ² σ *2s ² σ 2p _z ² π 2px ² π 2py ² π *2p _y ² π *2p _y ²	1	
		$\sigma^* 2 p_z^2$ Bond order (B.O) of $N_2 = \frac{1}{2} [N_b - N_a]$		4
		= $\frac{1}{2}$ [10 – 4] = $\frac{1}{2}$ x 6 = 3 Since B.O of N ₂ is 3, it contains a triple bond. Bond order (B.O) of Ne ₂ = $\frac{1}{2}$ [N _b – N _a]	1	4
		For Ne ₂ , B.O = $\frac{1}{2}$ [10 – 10] = $\frac{1}{2}$ x 0 = 0		
		Since B.O of Ne_2 is zero, it does not exist.	1	
29.	(i)	Hess's law states that the total enthalpy change for a process is the same whether		
		the reaction taking place in a single step or in several steps.	1	

		OR, the total enthalpy change for a process is independent of the path followed. OR, if a reaction takes place in several steps then its standard reaction enthalpy is the sum of the standard enthalpies of the intermediate reactions.		
	(ii)	Born-Haber cycle for the determination of lattice enthalpy of NaCl: $Na_{(s)} + \frac{1}{2}Cl_{2(g)} \longrightarrow Na^{+}Cl_{-(s)}$		
		$Na_{(s)} + \frac{1}{2} Cl_{2(g)} \longrightarrow Na^{+}Cl^{-}(s)$ $A_{sub}H^{0} \qquad \qquad \frac{1}{2} \Delta_{bond}H^{0}$ $Na_{(g)} \qquad Cl_{(g)}$	3	
		$\Delta_l H^0$ - e^- + $e^ \Delta_{eg} H^0$ $\Delta_{lattice} H^0$		4
		$\Delta_{f}H^{0} = \Delta_{sub}H^{0} + \Delta_{i}H^{0} + \frac{1}{2}\Delta_{bond}H^{0} + \Delta_{eg}H^{0} + \Delta_{lattice}H^{0}$ $OR, \ \Delta_{lattice}H^{0} = \Delta_{f}H^{0} - [\Delta_{sub}H^{0} + \Delta_{i}H^{0} + \frac{1}{2}\Delta_{bond}H^{0} + \Delta_{eg}H^{0}]$		
30.	(i)	Heterogeneous equilibrium: An equilibrium process in which the reactants and	1	
		products are in different phases.		
		OR, e.g. $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ OR, $H_2O(s) \rightleftharpoons H_2O(l)$	1	
	,	OR, any other correct example.		_
	(ii)	Here $K_c = 2 \times 10^{-3}$, [A] = [B] = [C] = 3 × 10^{-4} M		4
		For the reaction 2 A \rightleftharpoons B + C, the reaction quotient (Q _c) = $\frac{[B][C]}{[A]^2}$	1	
		$= \frac{3 \times 10^{-4} \times 3 \times 10^{-4}}{(3 \times 10^{-4})^2} = 1$	_	
		Since $Q_c > K_c$, the reaction will proceed in the reverse direction.	1	
31.		Detection of Nitrogen: Sodium fusion extract is boiled with iron (II) sulphate and then		
		acidified with concentrated sulphuric acid. The formation of Prussian blue colour	1	
		indicates the presence of nitrogen.		
		Detection of sulphur: On treating sodium fusion extract with sodium nitroprusside,		
		formation of a violet colour indicates the presence of sulphur.	1	
		OR, The sodium fusion extract is acidified with acetic acid and lead acetate is added		4
		to it. A black precipitate indicates the presence of sulphur.		
		Detection of chlorine and bromine: The sodium fusion extract is acidified with nitric		
		acid and then treated with silver nitrate. A white precipitate, soluble in ammonium	2	
		hydroxide shows the presence of chlorine. A pale yellow (yellowish) precipitate,		
		sparingly soluble in ammonium hydroxide shows the presence of bromine.		