SUMMATIVE ASSESSMENT – TERM I 2025 – 26

Class - IX

MATHEMATICS – ANSWER KEY

E-903

Ciass -	WATTENATIOS ANSWER RET	C-303
Qn no	Key	Score
	SECTION A	
1	A. $3x + 5y = 18$	1
2	B. $1\frac{1}{2}$	1
3	C. 4	1
4	A. $\frac{1}{4}$ $\left[\left(20 + \frac{1}{2} \right) \left(10 + \frac{1}{2} \right) = 20 \times 10 + \frac{1}{2} (20 + 10) + \frac{1}{2} \times \frac{1}{2} \right]$	1
5	B [Circumcentre of a right triangle is the midpoint of its hypotenuse]	1
6	C. (I) and (iii) are true	1
7	C. Both are true, statement 2 is the reason for statement 1	1
8	B. statement 2 is true, statement 1 is false.	1
	SECTION B	
9	For drawing a line of length 14 centimetre and divide into three equal parts.	1
	For completing the equilateral triangle.	
	2 cm	2
	2 cm	
	2 cm	
	14 cm	
10	Numbers $=\frac{41+15}{2}$, $\frac{41-15}{2}$	2
	$=\frac{56}{2}$, $\frac{26}{2}$ = 28 , 13	
		1
	Another way	
	Take numbers as x and y , then	
	$x + y = 41 \tag{1}$	
	$x - y = 15 \tag{2}$	
	Adding equations we get,	
	x + y + (x - y) = 41 + 15	
	x + y + x - y = 56	
	$2x = 56 \qquad = = = > \qquad x = \frac{56}{2} = 28$	
	Putting $x = 28$ in equation (1) we get , $28 + y = 41 = = = > y = 13$	

	5 x = 20		
	$x = \frac{20}{5} = 4$		
	$\therefore \text{Smaller number} = 4 , \text{Larger number} = 6 \times 4 = 24$		
	Another way		
	Take the smaller number as x and the larger number as y , then		
	$y = 6x \tag{1}$ $y - x = 20 \tag{2}$		
	Putting $y = 6x$ in equation (2), we get		
	6x - x = 20		
	$5 \ x = 20 \qquad = = = > x = \frac{20}{5} = 4$		
	\therefore Smaller number = 4 , Larger number = $6 \times 4 = 24$		
13	(i) $10x + 6$	1	
	(ii) Take the numbers as $10x + 6$ and $10y + 6$, then		
	$(10x + 6)(10y + 6) = 10x \times 10y + 6(10x + 10y) + 6 \times 6$		
	= 100 xy + 60 x + 60 y + 36		
	= 100 xy + 60 x + 60 y + 30 + 6	1	
	Ones place digit of the number got by adding 6 to the multiples of 10 is 6.		
	[100 xy + 60 x + 60 y + 30 + 6 = 10 (10 xy + 6 x + 6 y + 3) + 6]	1	
14(A)	(i) $(x+2)(y+2) = xy + 2(x+y) + 2 \times 2$	1	
	(ii) Take the even numbers as x and y , then		
	x + y = 26 , $xy = 144$	1	
	$(x+2)(y+2) = xy + 2(x+y) + 2 \times 2$		
	$= 144 + 2 \times 26 + 4 = 200$	1	
14(B)	Length of the first rectangle $= x$ metres, Breadth $= y$ metres $= = = > xy = 96$		
	(i) $(x+1)(y+1) = 117$	1	
	$xy + x + y + 1 \times 1 = 117$		
	96 + x + y + 1 = 117	1	
	x + y = 117 - 97 = 20		
	(ii) Perimeter of the first rectangle $= 2x + 2y = 2 \times 20 = 40$ metres	1	
	SECTION C		
15(A)	(i) $AC = \sqrt{1^2 + 1^2} = \sqrt{2}$ metres	1	
	(ii) $BD = \sqrt{2^2 - 1^2} = \sqrt{3}$ metres	1	
	(iii) Perimeter of the triangle ABC = $2 + \sqrt{2} + \sqrt{3} + 1$	1	
	$= 3 + \sqrt{2} + \sqrt{3}$	1	
	$= 3 + 1.41 + 1.73 \stackrel{D}{=} \sqrt{3} \qquad \stackrel{D}{=} 1 \qquad \stackrel{C}{=} $	1	
	= 6.14 metres = 614 centimetres	1	
		1	

Another way Take the numbers as x and y, then x + 13 = 2y = = = > 2y - x = 13 (1) y + 7 = 2x = = = > 2x - y = 7(2) Adding the equations, we get 2y - x + 2x - y = 13 + 7x + y = 20 = = = > x = 20 - yPutting x = 20 - y in the equation x + 13 = 2y, we get 20 - y + 13 = 2y = = = > 3y = 33 = = = > $y = \frac{33}{3} = 11$ x = 20 - 11 = 9 : Numbers = 11, 9 (i) AD:AB=3:9=1:318 [In any triangle, a line parallel to one of the sides cuts the other two sides in the same ratio] AE : AC = 1 : 3(ii) 1 (iii) $AE = \frac{1}{3} \times 6 = 2$ centimetres 1 EC = 6 - 2 = 4 centimetres [OR $EC = \frac{2}{3} \times 6 = 4$ centimetres] 1 19(A) Take the numbers as x and y, then 2x + 3y = 521 (1) 6x + 5y = 108(2) 6x + 9y = 1561 $(1) \times 3$: (3) Subtracting equation (2) form equation (3), we get 4y = 156 - 108 = 484y = 156 - 108 = 48 $y = \frac{48}{4} = 12$ Putting y = 12 in equation (1), we get 1 $2x + (3 \times 12) = 52$ $2x = 52 - 36 = 16 = = = > x = \frac{16}{2} = 8$ Numbers = 8 , 12 1 Another way Take the numbers as x and y, then 2x + 3y = 52**(1)** 6x + 5y = 108(2) (1) x 5 : 10x + 15y = 260(3) (2) x 3 : 18x + 15y = 324(4)

	Subtracting equation (3) from equation (4), we get	
	$8x = 324 - 260 = 64$ $= = = > x = \frac{64}{8} = 8$	
	Putting $x = 8$ in the equation (1), we get	
	$(2 \times 8) + 3y = 52 = = = > 3y = 52 - 16 = 36$	
	$y = \frac{36}{23} = 12$: Numbers = 8, 12	
19(B)	Fraction $=\frac{x}{y}$	
	$\frac{x+1}{y} = \frac{1}{5} \qquad = = = > y = 5(x+1) \qquad = = = > y = 5x + 5 \tag{1}$	1
	$\frac{x}{y+1} = \frac{1}{6} \qquad = = = > y+1 = 6x \tag{2}$	1
	Putting $y = 5x + 5$ in equation (2), we get	
	5x + 5 + 1 = 6x = = = > x = 6	1
	$y = (5 \times 6) + 5 = 35 = Fraction = \frac{6}{35}$	1
20	ABCD is a rhombus $[AB = BC = CD = DA]$	
	(i) AECF is a parallelogram.	1
	[AB and DC are parallel, AE = BE = CF = DF]	
	So AF and EC are parallel.	
	[Parallelogram is a quadrilateral with one pair	
	of equal and parallel sides $\begin{bmatrix} A & B \end{bmatrix}$ (ii) The lines AE and EC, but the diagonal BD at B and O	1
	(ii) The lines AF and EC cut the diagonal BD at P and Q.	1
	PQ = BQ [In triangle ABP, AE = BE, AP and EQ are parallel, In any	1
	triangle, the line parallel to a side, through the midpoint of another side,	
	meets the third side also at its midpoint.]	1
	DP = PQ [In triangle CDQ, DF = CF, PF and QC are parallel]	
20(B)	$\therefore DP = PQ = BQ$ (i) Area of the triangle $AVZ = 3$ so an C	1
^{20(D)}	(1) Area of the triangle AZZ = 3 sq.cm	1
	[$AX = PX = YZ$, $AZ = RZ = XY$, $PY = RY = XZ$] In any triangle, the length of the line joining the midpoints	
	of two sides is half the length of the third side	
	AXZ, XYZ, PXY are RYZ equal triangles]	
	(ii) Area of the triangle APR = $4 \times 3 = 12$ sq.cm	1
	: Area of the parllelogram APQR = $2 \times 12 = 24$ sq.cm	
	[APR and PQR are equal triangles] $A = A = A = A = A = A = A = A = A = A $	1
	(iii) Area of the triangle ABC = $4 \times 12 = 48$ sq.cm	
	[APR, PQR, BPQ and CQR are equal triangles]	1

		SECTION D				
21	For drawing a line of length 8.5 cent		in the ratio 4:3	3		
	For completing the rectangle	3 cm		2		
		8.5 cm				
22	(i) Length of the hypotenuse of the smallest right triangle = $\sqrt{2}$ cm					
	(ii) Perimeter of the fourth triangle = $2 + 1 + \sqrt{5}$					
		$= 3 + \sqrt{5}$ cm	\\[\sqrt{4} \]	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$		
	(iii) Perimeter of the fifth triangle	$=\sqrt{5} + 1 + \sqrt{6}$ cm	$\sqrt{3}$	$\frac{1}{3}$ $\frac{1}{1}$		
	Perimeter of the sixth triangle = $\sqrt{6} + 1 + \sqrt{7}$ cm					
	Difference of the perimeters $= \sqrt{7} - \sqrt{5}$ cm					
23		Age of son	Age of father			
	Before 2 years					
	Before 2 years	x - 2	y-2			
	Present	х	y			
	After 2 years	x + 2	y + 2			
	y - 2 = 6(x - 2) = = = > y	-2 = 6x - 12 =	= = > y = 6x - 10	(1) 1		
	y + 2 = 4(x + 2) = = = > y	+ 2 = 4x + 8 =	= = > y = 4x + 6	(2)		
	From equation (1) and equation ((2) , we get				
	6x - 10 = 4x + 6					
	2x = 16 = = = > x =	$=\frac{16}{2}=8$		1		
	$y = (6 \times 8) - 10 = 48 - 3$	_		1		
	Present age of son $= 8$, Present	age of father $= 38$				
	Another way					
		Age of son	Age of father			
	Before 2 years	Х	У			
	Present	x + 2	y + 2			
	After 2 years	x + 4	y + 4			

y = 6x(1) y + 4 = 4(x + 4) = = = > y + 4 = 4x + 16 = = = > y = 4x + 12(2) From equation (1) and equation (2), we get 6x = 4x + 122x = 12 $x = \frac{12}{2} = 6$ $y = 6 \ x = 6 \times 6 = 36$ Present age of son = 6 + 2 = 8Present age of father = 36 + 2 = 38Another way Age of father Age of son Before 2 years X 6xPresent 6x + 2x + 2After 2 years x + 46x + 46x + 4 = 4(x + 4)6x + 4 = 4x + 16 = = = > 6x = 4x + 12 $2x = 12 = = = > x = \frac{12}{2} = 6$ $y = 6 \times 6 = 36$ Present age of son = 6 + 2 = 8Present age of father = 36 + 2 = 38Take the length of the rectangle as x metres and the breadth as y metres, then 24 (x + 1)(y + 1) = 336 $xy + x + y + 1 \times 1 = 336$ = = = > xy + x + y = 3351 (1) (x-1)(y-1) = 226 $xy - (x + y) + 1 \times 1 = 226$ = = = > xy - (x + y) = 225(2) Adding the equations, we get 1 xy + x + y + xy - (x + y) = 335 + 2252xy = 560 $= = = > xy = \frac{560}{2} = 280$ 1 (i) Area of the original rectangle = $xy = \frac{560}{2} = 280$ square meters. (ii) Putting xy = 280 in equation (1), we get 1 280 + x + y = 335x + y = 335 - 280 = 551 Perimeter of the original rectangle $= 2x + 2y = 2 \times 55 = 110$ meters.

	Adding these equations, we get		
	xy - x + y + xy - y + x = 113 + 121	1	
	2xy = 234		
	(i) $xy = \frac{234}{2} = 117$	1	
	Putting $xy = 117$ in equation (1), we get		
	117 - x + y = 113	1	
	(ii) $x - y = 117 - 113 = 4$		
26(B)			
	(i) $xy = (x + 1)(y - 1) + 4$		
	xy = x(y-1) + 1(y-1) + 4	1	
	xy = xy - x + y - 1 + 4		
	xy = xy - x + y + 3	1	
	x - y = 3		
	(ii) $(x-1)(y+1) = y(x-1) + 1(x-1)$	1	
	= xy - y + x - 1		
	= xy + 3 - 1	1	
	= xy + 2		
	The product is increased by 2.	1	