SUMMATIVE ASSESSMENT - III 2025 – 26

Answer key

Qn no	Score	Answer/Value points	Further information
		Section A	
1	1	2.5	
		B. 35	
2	1	A. 57	
3	1	A.6	10
4	1	A	(D)
5	1	D. (3, 4)	3)
6	1	C. (ii) and (iv) are true	
7	1	D. (i) and (iv) are true	
8	1	C. Statement 1 and Statement 2 are true and Statement 2 is	
		the reason of Statement 1	
9		Section B	
	1	Number of pairs = 36	
	1	Probability that the sum of number turning up is 9	
		(3, 6), (4,5), (5,4), (6,3)	
	1	Probability = $\frac{4}{11}$	
10 A	1	i) 40	
	1	ii) 10 th term is the middle term of the terms from 7 th to 13 th	
	1	$10^{\text{th}} \text{ term} = \frac{40}{2} = 20$	
10 D	CX	. 90	
10 B	5	i) $5^{\text{th}} \text{ term} = \frac{90}{3} = 30$	
	9 1	ii) sum of first 9 terms = $30 \times 9 = 270$	
	1	iii) $30 - 4 \times 5 = 10$	
11 A	1	i) $10 \times 8 = 80$	
	1	$ii) \qquad \frac{3 \times 2 + 8 \times 1}{80}$	
	1	$\frac{14}{80} = \frac{7}{40}$	

11 B	1	1
	1	i) Area of shaded region = $\frac{1}{4}$ × area of square
	1	Probability that it would be
		Within the circle $\frac{1}{4}$
	_	
	1	ii) $\frac{3}{4}$
12	1	i) 1, 3, 5, 7, 9, 11,
		ii) The natural numbers 1, 2, 3, 4, 5, 6, 7, 8, leave
	1	remainders 1, 2, 3, 0, 1, 2, 3, 0, on division by
	1	4.
	1	The numbers leaving remainders 1 or 3 are the
	1	odd numbers.
		So the sequence is just the sequence of odd
		numbers, which is an arithmetic sequence with
		common difference 2
12		Electricites Nr. 1- 01
13		Electricity Number of houses consumption
		Below 50 5
		Below 100 20
		Below 150 45
		Below 200 95
		Below 250 115
		i) Below 300 125 i) Median consumption is consumption of 63 rd
	1	house.
	1	ii) Medium class : 150-200 =50 house
	40	$\frac{200-150}{50} = 1$
	G)	Consumption of 46 th house = $150 + \frac{1}{2} = 150 \frac{1}{2}$
(<u>)</u> 1	Consumption of 63^{rd} house = $150 + \frac{1}{2} + 17 \times 1$
	1	$Median = 167 \frac{1}{2}$
		(Give 1 score if cumulative frequency table alone is correct)
14		Section C
	_	
	1	Slope = $\frac{1-0}{0-1}$ = -1

	1	Writing any one coordinate
		Being slope -1, when x increases by 1, y decreases by 1
		(1, 0) a point
		\therefore (2, -1), (3, -2) are points.
15	1	i) a)Side of triangle = $2-(-2)=4$
	1	b) OB = 2, OC = $2\sqrt{3}$
		Coordinate of C is $(0, 2\sqrt{3})$
	1	(Give $\frac{1}{2}$ score if the x coordinate alone is correct)
	1 1	ii) For drawing x and y axis
	1	For marking any are point correctly
	1	For drawing equilateral triangle
16 A		i) Coordinate of C is (10, 6)
	1	AC = 10 - 4 = 6
	1	BC = 15 - 6 = 9
		(Give $\frac{1}{2}$ score if coordinate of C alone is correct)
		ii) In \triangle ADP, \triangle ACB angle are same
		Side are proportional
	1	$AD = \frac{AC}{3} = \frac{6}{3} = 2$
	1	$PD = \frac{BC}{3} = \frac{9}{3} = 3$
	1	iii) Coordinate of P (4+2), (6+3); P (6, 9)
16 B	1	i) radius = $\sqrt{(4-1)^2 + (5-1)^2}$
		= 5
	57	ii) $(x-4)^2 + (y-5)^2 = 25$
		iii) y – coordinate of a point in n axis is O
	1	$(x-4)^2 + (0-5)^2 = 25$
		$(x-4)^2 = 0$
	1	x = 4
		(Give $\frac{1}{2}$ score for y coordinate is 0)

17		Section D	
		Sum of two numbers = 20	
		i) Number are $10 + x$, $10 - x$	
	1	(10+x)(10-x)=95	
		$100 - x^2 = 95$	
	1	$x^2 = 5, x = \sqrt{5}$	
	1 1	number $10 + \sqrt{5}$, $10 - \sqrt{5}$	
18	1	i) Sum of first 20 terms = $\frac{5 \times 20 \times 21}{2} + 20 \times 1$	\
	1	= 1050 + 20 = 1070	
	1	ii) $4-1=3$ $3 \times 20 = 60$ more	
19	1	2 1	
	1	i) $x_n = \frac{2}{3}n - \frac{1}{3}$	
		$=\frac{2n-1}{3}$	
		Here 2n–1 is an odd number and if take	
	1	$n = 1, 2, 3, \dots$ we get all odd number in numerator	
		There for numerator contains all odd multiples of 3.	
	1	Dividing these number by 3, we get all odd numbers	
		ii) An odd number divided by 3 will never be an even	
	1	number, hence the sequence certain we even	
		number.	
20.4		2 56 (+1)(+1)	
20 A		i) $x^2 - x - 56 = (x+a)(x+b)$	
	1	a+b=-1, $ab=-56$	
	C	a = -8, b = 7	
	5) 7	$x^2 - x - 56 = (x - 8)(x + 7)$	
		(Give 1 sore if any one factor alone is correct)	
	1	ii) $2x^2-2x-112 = 2(x^2-2-56)$	
		2(x-8)(x+7) = 0	
	1	x = 8, x = -7 (Give 1 score if only one solution is correct)	
20.0	1	,	
20 B	1	At the point of inter section of x – axis, y coordinate is 0	
	1	or $3x^2 + 2x - 5 = 0$	

		a = 3, b = 2, c = -5
		$x = \frac{-2 \pm \sqrt{4 - 4 \times 3 \times -5}}{2 \times 3}$
	1	$x = \frac{-2 \pm \sqrt{64}}{6}$
		$x = \frac{-2+8}{6} \text{ or } \frac{2-8}{6}$
	1	$=1,\frac{-5}{3}$
		$C_{\text{condinate}} (1, 0) (-5, 0)$
		Coordinate $(1, 0), (\frac{-5}{3}, 0)$
		Section – E
21		1.5
		3 60
	1	20
		30°
		350
	1	For drawing rough figure and marking measure correctly
		For identify the sides triangle are the ratio 1: $\sqrt{3}$: 2 and
		Height of the building and boy $= 21.5$
		tau 200 21.5
		$\tan 30^{\circ} = \frac{21.5}{\text{car parked distance}}$
		$\tan 30^{\circ} = \frac{1}{\sqrt{3}}$
	1	Distance = $21.5\sqrt{3}$
		100
22 A	1	i) $\angle ACB = \frac{100}{2} = 50^{\circ}$
	1	ii) The central angle in the first figure and angle
	GX?	made by the arc in the second figure are same the
	5	figure are same
(2) 1	Central angle of the are in second figures is twice
		the first
		$2 \times \frac{1}{6} = \frac{1}{3}$ part of the circle
		6 3
22 B	1	i) $\angle ADB = 90^{\circ}$
	1	ii) In figure $AB = AC$
	1	∴∠ADC = 90°
		Perpendicular drawing
	1	1 dipondiourar drawing

		from conmen vertex of the equal sides of an
	1	isosceles triangle bisects the third side.
		∴ D is the mid point of BC
		Circle drawn with AC as diameter also passes
		though D by the some reason
23 A	1	i) Slant height = $\sqrt{25^2 - 15^2} = 20$
	1	$Height = \sqrt{20^2 - 15^2} = \sqrt{175} = 5\sqrt{3}$
	1	ii) $l = \sqrt{25^2 - 20^2} = \sqrt{15}$
		$15 < \frac{40}{2} \text{ or } l < \frac{a}{2}$
	1	∴ we can not make a sequence pyramid
23 B	1	i) Volume = $\frac{4}{3}\Pi \times 6^3 = 288 \Pi$ cube
	1	ii) Ratio of volume = r_1^3 : r^3
		$1^3: (\frac{1}{3})^3 = 1: \frac{1}{27} = 27: 1$
	1	3
		iii) 27 small sphere can be made
24	1	i) $h = 6 \times \sin 40$
2-1	1	$= 6 \times 0.6428 = 3.8568 \text{ cm}$
	1	Area = $\frac{1}{2} \times 8 \times 3.9$
		= 15.6 sq.cm
		ii) Shortest distance is the perpendicular distance
	1	from the end point of the 8cm line to the other
	>	side
	CXS	Least length = $8 \times \sin 40 = 8 \times 0.64$
	D	= 5.12
		=5.1cm
25 A		i) Angle of regular pentagon 108°
23 A	1	triangle is isosceles,
	1	other two angles are
	1	$\frac{108-108}{2} = 36^{\circ}$
		$\frac{268 - 268}{2} = 36^{\circ}$

_		
	1	Angle between tangent code is equal to the angle
		in the opposite segment
	1	∴ marked angles are 36° each
		ii) In any regular polygon if we draw tangent to the
		circumcircle at a vertex, we get an iceless
		triangles whose the angles on other vertices
	1	equal
		These angles are angles in alternate segment of
		the two angles made by tangent at that vertex
		∴these angle are equal
25 B	1	i) Area = $= \sqrt{3} \times \frac{(4)^2}{4} = 4\sqrt{3} \text{ sqcm}$
		$S = \frac{12}{3} = 6$
	1	Inradius = $\frac{4\sqrt{3}}{6} = \frac{2}{3}\sqrt{3}$ cm
		ii) In an equilateral triangle angle bisectors are the
		perpendicular bisectors of opposite side
	1	∴Circumcentre and incentre are same
		Angle of the right triangle formed is 30, 60, 90,
	1	∴ R = 2r
26	1	For drawing a rectangle with given measures
	1	For extending base about 3 centimetre and drawing semi
	1	circle
	1	For drawing one side of the square
		For completing the square
27	1	For drawing a circle with given measures
	D	For calculating any one central angles
(2) 1	For drawing central angle
	1	For drawing tangents
		<u> </u>