

Summative Assessment - II Term, 2025-26
PHYSICS – Standard X (English Medium) Time: 1½ Hours Total Score: 40

Section A (4 × 1 = 4)

1. **Which type of lens has a positive power?**

Answer: (b) Convex lens

Explanation: Power of a lens $P = 1/f$. Convex lens has positive focal length (converging), so positive power. Concave lens has negative focal length (diverging), so negative power.

2. **Assertion-Reason**

Answer: (a) Both assertion and reason are true, and reason is the correct explanation of assertion.

Explanation: White light disperses in a prism because different wavelengths (colours) deviate by different amounts due to varying speeds in the medium ($v = c/\mu$, μ differs for colours).

3. **Magnetic poles in solenoid**

Answer: (b) ii and iv

Explanation: Polarity depends on direction of current (right-hand grip rule). Reversing current reverses polarity (ii correct). Opposite poles form at ends (one N, one S → iv correct). i and iii are wrong as both ends can't be same pole.

4. **Matching – Step-up transformer**

Answer: (c) A-3-iii, B-1-ii, C-2-i

Explanation:

- Primary coil: Input (3), thick wire (iii – low current, high voltage side in step-up).
- Secondary coil: Output (1), thin wire (ii – high current, low voltage? Wait – actually in step-up: secondary has more turns → thin wire).
- Core: Confines flux (2), soft iron (i). Correct matching as per standard.

Section B (7 × 2 = 14)

5. **Wave speed**

Answer: 8 m/s

Calculation: Distance between consecutive particles in same phase = $\lambda = 4$ m. Time for 10 vibrations = 5 s $\Rightarrow f = 10/5 = 2$ Hz. $v = f\lambda = 2 \times 4 = 8$ m/s.

6. **Tuning fork and string**

Answer: Resonance

Explanation: When frequency of tuning fork matches natural frequency of string, forced vibrations occur with large amplitude due to resonance.

7A. Tyndall effect **Answer: Tyndall effect**

Examples (any two): Path of light visible in dusty room/cinema hall, sunlight through forest canopy, projector beam in smoke, street light in fog. *Explanation:* Scattering of light by colloidal particles makes path visible.

7B. Colour of Sun

Answer: Red at sunrise/sunset; whitish at noon.

Explanation: At sunrise/sunset, light travels longer path through atmosphere \rightarrow more

scattering of shorter wavelengths (blue/violet). Red (longer λ) scatters least \rightarrow reaches eye. At noon, shorter path \rightarrow less scattering \rightarrow appears white.

8. Magnetic field direction around conductor

(a) Negative terminal to P

(b) Right-hand thumb rule

Explanation: For anticlockwise field (viewed from above), current must flow upwards in AB. Using right-hand thumb rule, thumb upwards \rightarrow fingers curl anticlockwise.

9. Heating effect *

Explanation: $H = V^2t/R$ (Joule's law). Voltage V and time t same. Second circuit produces more heat ($3600\text{ J} > 900\text{ J}$) \Rightarrow lower resistance R \Rightarrow higher current.

10. Reducing carbon footprint in public transport **

Any relevant points (2 marks)*: Use electric/public vehicles, promote carpooling/cycling, renewable energy sources, tree plantation, awareness campaigns, reduce single-use plastics.

11A. Induced emf

(a) Increases – Faster motion \rightarrow rapid flux change \rightarrow higher emf (Faraday's law).

(b) Zero – No relative motion \rightarrow no flux change.

11B. Electromagnetic induction

(a) Electromagnetic induction – Induced emf due to change in magnetic flux.

(b) Factors: Rate of flux change (speed), number of turns, strength of magnetic field.

Section C (6 x 3 = 18)

12A. Lens formula $u = -20\text{ cm}$, $v = -10\text{ cm}$ (virtual erect image by concave lens). $1/f = 1/v - 1/u = -1/10 - (-1/20) = -1/10 + 1/20 = -1/20$ $f = -20\text{ cm}$

12B. Magnification Given $f = -15\text{ cm}$, $u = -25\text{ cm}$, $v = -10\text{ cm}$. $m = v/u = (-10)/(-25) = 0.4$ (erect, diminished)

13. Vision defect **(a) Hypermetropia (long-sightedness)** – Image forms behind retina when object at near point. **(b) Corrected by convex lens** **(c) Near point farther than 25 cm** (normal near point = 25 cm)

14. MRI and metals **(a)** Strong magnetic field attracts ferromagnetic objects (danger), induces current \rightarrow heating/burns, distorts image. **(b)** Magnetic shielding with soft iron sheets.

15. Energy consumption Total power = $5 \times 60 + 2 \times 80 + 200 = 660\text{ W}$ Daily energy = $660 \times 8 / 1000 = 5.28\text{ kWh}$ Monthly (30 days) = 158.4 kWh Cost = $158.4 \times 5 = \text{Rs 792}$

16. Operating voltage Rated: $R = V^2/P = 240^2/400 = 144\text{ }\Omega$ New P = $100\text{ W} \Rightarrow V = \sqrt{P \times R} = \sqrt{100 \times 144} = 120\text{ V}$

17A. Generator

(a) DC generator (split ring commutator).

(b) Split ring commutator and brushes

(c) AC – Rotating magnet reverses flux direction every half turn \rightarrow alternating current.

17B. Power stations

(a) 11 kV

(b) Nuclear → Heat → Mechanical → Electrical

(c) Fuel burnt → heat → steam → turbine rotation → generator.

Section D (1 × 4 = 4)

18A. Motor principle

(a) South pole at X

(b) Fleming's left-hand rule – Forefinger (field), middle finger (current), thumb (force). **(c) Reverse direction of current**

18B. Electric motor

(a) North at Y (when AB moves up)

(b) Diagram of Fleming's left-hand rule arrows.

(c) Reverse current direction (battery polarity)

(d) Electrical → Mechanical energy