CODE NO	R	0	ч	Λ	2	1	2	3	Λ	2
CODEMO	1	U	5	U		-		3	U	-

2007 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY

II B.TECH I SEMESTER REGULAR EXAMINATIONS, NOVEMBER 2007 BIO CHEMICAL THERMODYNAMICS (BIO-TECHNOLOGY)

SET NO -4 **NOVEMBER 2007**

TIME: 3 HOURS

	MARKS: 80
Answer any FIVE Questions All Questions carry equal marks	N
1. (a) Classify the following into intensive and extensive property with su	itable explanation:-
i. Total mass,	>
ii. Volume	
iii. Molecular weight	
iv. Density	
v. Heat	
vi. Temperature	
(b) Define reversible process with suitable example. [8+8]	
2. It is desired to design a tank to store 10Kmol methane at 6.0 MPa and size of the tank using the Red lich? Kwong equation of state. The critical are $PC = 4.6$ MPa and $TC = 190.6$ K. [16]	
3. (a) Give an example of a fundamental relation.	
(b) What is an equation of state? How many equations of state are there is single component of simple compressible substance? [6+10]	for a
4. Prove the following.	
(a) -	
Vid	
i = Vi [4]	
(b) -	
Hid	
i = Hi [4]	

- (c) V id = P I xi Vi [4] (d) Hid = P I xiHi [4]
- 5. (a) List the conditions under which Raoult?s law is valid for VLE. Show that for above conditions. $yiP = xiPsat \ i \ (i = 1, 2, --- N)$
- (b) Whether conditions under which, Raoult?s law is valid for VLE are realistic? Which condition is not realistic. Discuss modified Raoult?s law. [8+8]
- 6. The equilibrium constant for the reaction, CO(g) + 2H2(g)! CH3OH(g), at 400K is 1.737 suppose a reactor which is maintained at 1 Mpa and 400K is fed with a stoichio metric mixture of CO and CO and CO and CO and CO and CO and CO are equilibrium mixture.
- 7. (a) Explain the Gaden classification from stoichiometric point of view the product formation in fermentation processes.
- (b) The following stoichiometric equation describes penicillin systhesis: 1.5 Glucose + H2SO4 +2NH3 +phenylacetatePencilliumG+CO2 +8H2O the the oretical yield of pencillium is 1.2g (gram of glucose). Find out the molecular weight of pencillium G. [16]
- 8. Write Short notes
- (a) Respiratory Quotient