more materials r.com/forum 101MA07 - B MATHEMATICS

If α and β are the roots of $x^2 - 2x + 4 = 0$, then $\alpha^n + \beta^n$ is -1.

3.

(A)
$$2^{n+1}\cos\frac{2n\pi}{3}$$
. (B) $2^{n+1}\cos\frac{n\pi}{6}$.

(C)
$$2^{n+1}\cos\frac{n\pi}{3}$$
. (D) $2^{n+1}\cos\frac{3n\pi}{4}$.

2.
$$(Z_5, +_5)$$
 is -

The angle of intersection of the curves
$$x^2 = 2y$$
 and $x^2 + y^2 = 8$ at (2, 2) is -

(A)
$$\tan^{-1}(3)$$
.
(B) $\tan^{-1}(2)$.
(C) $\tan^{-1}(1)$.
(D) $\tan^{-1}(0,5)$.

4. The inverse of the matrix
$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 is -

(A)
$$\frac{-1}{54}\begin{bmatrix} 3 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
. (B) $\begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & -\frac{1}{6} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$.

(A)
$$\overline{54} \begin{bmatrix} 0 & -6 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 (B) $\begin{bmatrix} 0 & -\frac{1}{6} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$ (C) $\begin{bmatrix} -18 & 0 & 0 \\ 0 & 9 & 0 \end{bmatrix}$ (D) $\begin{bmatrix} 3 & 0 & 0 \\ 0 & -6 & 0 \end{bmatrix}$

(B) (a+b+c).

(C)
$$\begin{bmatrix} -18 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & -18 \end{bmatrix}$$
 (D)
$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
.

 $\begin{bmatrix} 1 & 1 & 1 \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{bmatrix}$ is equal to –

(A) 0. (C) $(a+b+c)^2$.

(A)
$$\frac{-1}{54} \begin{bmatrix} 0 & -6 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
. (B) $\begin{bmatrix} 73 & 0 & 0 \\ 0 & -\frac{1}{6} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$

The inverse of the matrix
$$\begin{bmatrix} 0 & -6 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 is -

find more materials at Cusat Digital Library Service http://dspace.cusat.ac.in/ 2

The value of λ for which $\vec{i} + \vec{j} + \vec{k}$, $3\vec{i} + 5\vec{j} - 12\vec{k}$ and $5\vec{i} + 7\vec{j} + \lambda\vec{k}$ are coplanar 6. is -

The line
$$y-x-2=0$$
 touches the parabola $y^2 = 8x$ at -

(A) (2, 3). (B) (2, 4).

(C)
$$(8, 8)$$
. (D) $\left(\frac{1}{8}, 1\right)$.

7.

9.

10.

(A)

8. Distance between two complex numbers
$$(2 + 2i)$$
 and $(3 + i)$ is -

(A) $\sqrt{2}$.

(B) 2.

(C) 1.

(D) $4\sqrt{2}$.

If
$$\frac{dy}{dx} = \infty$$
 at a point P on the curve $y = f(x)$, then -

the normal at P to the curve y = f(x) is parallel to x-axis.

The least value of
$$n$$
, for which $[(1+i)/(1-i)]^n = 1$, is -

(A) 1. (B) 2.

(A) 1. (B) 2. (C) 4. (D) 6. The function
$$\left[1 - \frac{x^2}{\cos x} - \cos x\right]$$
 is decreasing when x lies in

11. The function
$$\left[1 - \frac{x^2}{2} - \cos x\right]$$
 is decreasing when x lies in -

(A)
$$(-\pi/2, 0)$$
.
(B) $(0, \pi/2)$.
(C) $(-\infty, 0)$.
(D) $(0, \infty)$.

12.

Solution of $\sin^{-1} x \, dy + \frac{y}{\sqrt{1-x^2}} \, dx = 0$ is -

(C) $v = c \sin^{-1} x$.

(D) $v - \sin^{-1} x = c$.

(B) $y \sin^{-1} x = c$. (A) $\sin^{-1} x + y = c$.

f fund of the control of the control

13. Rank of a matrix is -

- (A) not defined for a rectangular matrix.
- the order of highest non-vanishing minor. (B) the largest among the number of rows and the number of columns. (C)
- the lowest order non-vanishing minor. (D)
- 14. In a gambling, one is paid Rs. 10 if he gets all heads and Rs. 8 for all tails. He loses Rs. 4 if he gets one or two heads, when three coins are tossed once. The
- expected gain is --0.75(A) -0.51.5 (C) (D) 1
- 15. Given ω is a complex cube root of unity the value of the determinant
 - - (A) 0. (B) ω . (C) ω^2 (D) 1.

A random variable X has the following probability function

 $3k^2$. Then value of k is -P(x) k^2 k 2k(A) -1. (\mathbf{B}) 0.

16.

3

x

- (C) $\frac{1}{16}$.
- The work done by the force $\vec{F} = a\vec{i} + \vec{j} + \vec{k}$ in moving a particle from (1, 1, 1)17.
- to (2, 2, 2) along a straight line is 5 units. Then the value of a is -(A) 2. **(B)** 3.
 - (C) (D) 5. 18.
 - The vectors $\vec{i} 2\vec{j} + 3\vec{k}$ and $-3\vec{i} + 6\vec{j} 9\vec{k}$ are
 - non-coplanar.
 - (B) parallel and have opposite directions. parallel and have same directions.
- (C) perpendicular to each other. (D)

(A)

find more materials at www.peducate.com/forum[101MA07 - B]

19. If
$$f(x) = \begin{cases} \frac{x^5 - 32}{x - 2}, & x \neq 2 \\ k, & x = 2 \end{cases}$$
 is continuous at $x = 2$, then $k = 2$

(C)
$$\Delta = 0$$
, $\Delta_1 = \Delta_2 = \Delta_3 = 0$
(D) $\Delta = 0$, at least one of Δ_1 , Δ_2 , $\Delta_3 \neq 0$.

The probability that only one of them is an Ace is -

(A)
$$\frac{144}{169}$$
.

(B) $\frac{24}{169}$.

(A)
$$\frac{1}{169}$$
.

(C)
$$\frac{1}{169}$$
. (D) Given ω is a cube root of unity. Then ω is -

22.

23.

is -

(C) $v^{-5} = z$.

s a cube root of unity. T
$$+i$$

ven
$$\omega$$
 is a cube root of unity. T

(A) $\frac{1+i}{\sqrt{2}}$.

(A)
$$\frac{1+i}{\sqrt{2}}.$$
(C)
$$\frac{-1\pm i\sqrt{3}}{2}.$$

(B)
$$\frac{1-i}{\sqrt{2}}$$
.

(B)
$$\frac{1}{\sqrt{2}}$$
.
(D) $\frac{-1 \pm i\sqrt{3}}{\sqrt{2}}$.

The set of all
$$2 \times 2$$
 non-singular matrices with respect to matrix multiplication is -

What substitution will reduce the equation $x \frac{dy}{dx} + y = x^3 y^6$ into a linear equation?

uation?
(A)
$$y^6 = z$$
.
(B) $y^5 = z$.
(C) $y^{-5} = z$.
(D) $y^{-6} = z$.

fcisnobitanton eriquette exical as / at www.educationobserver.com/forum 101MA07 - B

www.educationobserver.com/forum
$$(101 ext{MA07} - ext{B})^2$$
 is equal to -

(A)
$$a^2b^2$$
.
(B) $a^2b^2\cos^2\theta$.
(C) $a^2b^2\sin^2\theta$.
(D) $ab\sin^2\theta$.

26. The slope of the tangent to the curve
$$y(x-2)(x-3)-x+7=0$$
 at the point where it cuts the x-axis is -

(A)
$$-20$$
. (B) $-\frac{1}{20}$. (C) $\frac{1}{20}$. (D) 20.

$$z = x^y + y^x$$
. The value of $\frac{\partial z}{\partial x}$ when $x = y = 1$ is -

(A) 0. (B) 1.

(C) 2. (D) 3.

27.

28.

(A)
$$-1$$
.
(B) 0 .
(C) 1 .
(D) $1+i+i^2$.

The value of $(1+i)(1+i^2)(1+i^3)(1+i^4)$ is -

29. If
$$\vec{a}$$
, \vec{b} , \vec{c} , \vec{d} represent the four sides of quadrilateral in an order, then the quadrilateral reduces to a parallelogram, if -

(A) $\vec{a} + \vec{b} = 0$.

(B) $\vec{a} + \vec{c} = 0$.

(C) $\vec{a} + \vec{d} = 0$.

(D) $\vec{b} + \vec{c} = 0$.

30. The inverse of the permutation
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$
 is -

(A)
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$$
. (B) $\begin{pmatrix} 2 & 4 & 1 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix}$. (C) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$. (D) $\begin{pmatrix} 2 & 4 & 1 & 3 \\ 3 & 1 & 2 & 4 \end{pmatrix}$.

find more materials at www.poeducatoionoloserver.com/forum101MA07 - B

31. A balloon which always remains spherical has a variable diameter
$$\frac{3}{2}(2x+3)$$
.

The rate of change of its volume with respect to x is -(A) $\frac{9\pi}{16}(2x+3)^2$. (B) $\frac{9\pi}{8}(2x+3)^2$.

(C)
$$\frac{27\pi}{8}(2x+3)^2$$
. (D) $\frac{27\pi}{8}(2x+3)^3$.
If 0.3 is the probability of a bolt to be defective and ten are selected at random for inspection, the probability that at least one out of ten is defective is -

(A)
$$(0.7)^{10}$$
. (B) $1-(0.7)^{10}$. (C) $1-(0.3)^{10}$. (D) $(0.3)^{10}$.

33. The projection of
$$\vec{i} + \vec{j} + \vec{k}$$
 on $3\vec{j} + 4\vec{k}$ is -

(A) $\frac{7}{5\sqrt{3}}$. (B) $\frac{7}{\sqrt{3}}$.

(A)
$$\frac{7}{5\sqrt{3}}$$
. (B) $\frac{7}{\sqrt{3}}$. (C) $\frac{7}{5}$. (D) $\frac{7}{26}$.

(C)
$$\frac{1}{5}$$
. (D) $\frac{1}{26}$.

34. The argument of $\left[1+\left[\frac{1+i}{1-i}\right]^4-\left[\frac{1-i}{1+i}\right]^4\right]$ is -

The argument of
$$\left[1+\left[\frac{1-i}{1-i}\right]-\left[\frac{1+i}{1+i}\right]\right]$$
 is -

(A) $\frac{-\pi}{4}$. (B) 0.

(C)
$$\frac{\pi}{2}$$
. (D) π .
35. Given the p. d. f. of X is $f(x) = \begin{cases} Ax, & 5 < x < 12 \\ & \text{Then P}(6 < X < 8) \text{ is } -1 \end{cases}$

35. Given the p. d. f. of X is
$$f(x) = \begin{cases} Ax, & 5 < x < 12 \\ 5, & \text{elsewhere} \end{cases}$$
. Then P(6 < X < 8) is -

Given the p. d. f. of X is
$$f(x) = \begin{cases} 5 \\ 6 \end{cases}$$
, elsewhere. Then $P(6 < X < 8)$ is -

frisnobitation eviquent to the server of the

The solution of
$$(2D^2 - 7D + 3)y = 0$$
 is -
(A) $y = Ae^{-7x} + Be^{3x}$. (B) $y = Ae^{-7x/2} + Be^{3x/2}$.

(C)
$$y = Ae^{\frac{1}{2}x} + Be^{7x}$$
. (D) $y = Ae^{\frac{1}{2}x} + Be^{3x}$.

$$y = Ae^{-x} + Be^{-x}.$$

$$y = Ae^{-x} + Be^{-x}.$$

The value of the integral
$$\int_{0}^{\frac{3}{2}a} \sqrt{4a^2 + y^2} dy$$
 is -

37.

(A)
$$a \left[\frac{15}{16} + \log 2 \right]$$
. (B) $a^2 \left[\frac{15}{16} - \log 2 \right]$.
(C) $2a^2 \left[\frac{15}{16} + \log 2 \right]$. (D) $a^2 \left[\frac{5}{4} - \log 2 \right]$.

38. Given
$$f(x) = |x|$$
. At $x = 0$

39. Two vertices of a triangle have position vectors
$$3\vec{i} + 4\vec{j} - \vec{k}$$
 and $2\vec{i} + 3\vec{j} + 4\vec{k}$. If the position vector of its centroid is $\vec{i} + 2\vec{j} + 3\vec{k}$, then the position vector of the third vertex is -

(A)
$$-2\vec{i} - \vec{j} + 6\vec{k}$$
. (B) $-2\vec{i} - \vec{j} - 6\vec{k}$. (C) $2\vec{i} - \vec{j} + 6\vec{k}$. (D) $-2\vec{i} + \vec{j} + 6\vec{k}$.

(A)
$$1^{\infty}$$
 (B) $\infty - \infty$ (C) $\infty \times 0$ (D) $\infty + \infty$

(C)
$$\infty \times 0$$
 (D) $\infty + \infty$
41. If $|z-3i|+|z+3i|=0$, then the locus of z is the -

11. If
$$|z-3i|+|z+3i|=0$$
, then the locus of z is the -

imaginary axis. (A) real axis. (B)

(A) real axis. (B) imaginary axis. (C) circle
$$x^2 + y^2 = 1$$
. (D) circle $x^2 + y^2 = 9$.

find more materials at www.educationobserver.com/forum 101MA07 - B Cusat Digital Library Service http://dspace.cusat.ac.in/ 42. If $Re\left(\frac{z-2}{z+i}\right)=0$, then the locus of z is a -

- (A) circle not through origin. (B) circle through origin. (C) straight line not through origin. straight line through origin.
- Solution of $\frac{dy}{dx} = \frac{y + \sqrt{x^2 + y^2}}{x}$ can be obtained by solving -43.
 - (B) $\frac{vdv}{1+v^2} = \frac{dx}{x}.$ (A) $\frac{dv}{\sqrt{1+v^2 n}} = \frac{dx}{x}.$ (D) $\frac{dv}{v + \sqrt{1 + v^2}} = \frac{dx}{x}.$
 - (C) $\frac{dv}{1+v^2} = \frac{dx}{r}.$ $\lim_{x \to 0} \frac{5\sin x - 8\sin 2x + 3\sin 3x}{r^2 \sin r} =$

44.

45.

- (A) 0. If S and T are subgroups of a group G, then which one of the following
- statements is always true? (A) Neither $S \cup T$ nor $S \cap T$ is a subgroup of G. (B) $S \cup T$ is a subgroup G.
 - (C) $S \cap T$ is a subgroup of G.
- (D) Both $S \cup T$ and $S \cap T$ are subgroups of G. Let \vec{a} , \vec{b} and \vec{c} be three vectors having magnitudes 1, 2 and 3 respectively. If 46.
 - the projection of \vec{b} along \vec{a} is equal to that of \vec{c} along \vec{a} and \vec{b} and \vec{c} are perpendicular to each other, then $|\vec{a} - \vec{b} + \vec{c}| =$

(C) $\frac{\pi}{4}$.

- (B) $2\sqrt{14}$. (D) $2\sqrt{7}$.
- In a triangle ABC if $\underline{|C|} = 90^{\circ}$, then $\tan^{-1}\left(\frac{a}{b+c}\right) + \tan^{-1}\left(\frac{b}{c+a}\right) =$ 47.

 - (B) $\frac{\pi}{6}$.

(D) $\frac{\pi}{2}$.

find more materials at www.poeding.actionsposessiver.com/forum.101MA07 - B

48. If
$$|z| = 1$$
 and $w = \frac{z-1}{z+1}$, $z \neq -1$, then the real part of $w = (A) - 1$.

(A) 1. (B) -1. (C) 0. (D) 2. (e-7)
$$r^2 + 3r - e$$
 A B C . (a) 2.

49. If
$$\frac{(e-7)x^2 + 3x - e}{x^3 - x} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1}$$
, then $(\log_e A) - 2B + C$ is equal to -

(A) 1.

(B) $e-1$.

(C) e .

(D) 0.

50. If
$$\alpha$$
, β and γ are the roots of $x^3 - 3x^2 + 5x - 7 = 0$, then $1 + \frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}$ is equal to -

(A) $\frac{3}{7}$. (B) $\frac{5}{7}$.

(A)
$$7$$
 (B) 7 (C) $\frac{10}{7}$ (D) $\frac{15}{7}$

If $a \tan \theta = b$, then $a \cos 2\theta + b \sin 2\theta =$

51.

(A)
$$a$$
. (B) b . (C) $\frac{2ab}{a^2 + b^2}$. (D) $\frac{2ab}{a^2 - b^2}$.

(A)
$$4x^{2} + y^{2} = 4$$
.
(B) $x^{2} + 4y^{2} = 1$.
(C) $x^{2} + 4y^{2} = 4$.
(D) $4x^{2} + y^{2} = 1$.
53. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{a} \cdot \vec{b} = 1$, $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$, then $\vec{b} = \hat{k}$.
(A) \vec{a} .

(C)

53. If
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{a} \cdot \vec{b} = 1$, $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$, then $\vec{b} = (A) \vec{o}$.

(B) \hat{k} .

(C) \hat{j} .

(D) \hat{i} .

54. If e_1 and e_2 are the eccentricities of the hyperbolas $xy = c^2$ and $x^2 - y^2 = c^2$ respectively, then $e_1^2 + e_2^2 = (A) =$

(D) 9.

find more makerials 10 at www.educationobserver.com/forum 101MA07 - B

www.educationobserver.com/forum
$$\frac{101\text{MA07} - \text{B}}{\text{cot}^{-1}9 + \text{cosec}^{-1}\frac{\sqrt{41}}{\text{cot}^{-1}}} =$$

55.
$$\tan \left[\cot^{-1} 9 + \csc^{-1} \frac{\sqrt{41}}{4}\right] =$$

55.
$$\tan \left[\cot^{-1} 9 + \csc^{-1} \frac{\sqrt{41}}{4}\right] =$$

55.
$$\tan \left[\cot^{-1}9 + \csc^{-1}\frac{\sqrt{41}}{4}\right] =$$

(A) 1. (B) -1. (C) 3. (D) -2.

(C) 3.

(A) $i \cot n\theta$.

(C) $2\cos n\theta$.

(A) 3.

(C) 2.

(A) $\frac{\pi}{2}$.

(C) $\frac{\pi}{6}$.

(A) 1, -5. (C) -1, -5.

 $\lim_{x \to \infty} \left(1 + \frac{1}{2 + 3x} \right)^{4 + 5x} =$

(A) $_{\rho}$ $\frac{5}{3}$

56.

57.

58.

59.

60.

If $z = \cos \theta + i \sin \theta$, then $\frac{1 + z^{2n}}{1 - z^{2n}} =$

If z_1 , z_2 and z_3 are complex numbers such that

 $|z_1| = |z_2| = |z_3| = \left|\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}\right| = 1$, then $|z_1 + z_2 + z_3| = 1$

The characteristic roots of the transpose of $\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$ are -

$$|\cot^{-1} 9 + \csc^{-1} \frac{\sqrt{41}}{4}| =$$

$$\left[\cot^{-1}9 + \csc^{-1}\frac{\sqrt{41}}{4}\right] =$$

(B)

(D)

(B)

Let \vec{a} , \vec{b} and \vec{c} be three vectors having magnitudes 1, 1 and 2 respectively. If

 $\vec{a} \times (\vec{a} \times \vec{c}) + \vec{b} = \vec{0}$, then the acute angle between the vectors \vec{a} and \vec{c} is -

(D) $\frac{1}{2}$.

(B) $\frac{\pi}{3}$.

(D) $\frac{2\pi}{3}$.

(B) -1, 5. (D) 1, 5.

(B) $\cdot {}_{\rho} \frac{3}{5}$ (D) $\frac{1}{2}$

 $i \tan n\theta$.

 $2i \sin n\theta$.

55.
$$\tan \left[\cot^{-1} 9 + \csc^{-1} \frac{\sqrt{41}}{4}\right] =$$

w.educationobserver.com/forum
$$\frac{101MAO}{4}$$
 = $\frac{1}{4}$ $\left[\cot^{-1}9 + \csc^{-1}\frac{\sqrt{41}}{4}\right] = \frac{1}{4}$

find more materials at Cusat Digital Library Service http://dspace.cusat.ac.in/ II Cusat Digital Library Service http://dspace

61. If
$$\log_2(2^{x-1}+6) + \log_2(4^{x-1}) = 5$$
, then x is equal to -

62. The value of
$$\sin^4\left(\frac{\pi}{8}\right) + \sin^4\left(\frac{3\pi}{8}\right) + \sin^4\left(\frac{5\pi}{8}\right) + \sin^4\left(\frac{7\pi}{8}\right)$$
 is -

(A) $\frac{1}{2}$. (B) $\frac{3}{2}$.

(C)
$$\frac{1}{3}$$
. (D) $\frac{2}{3}$.

63. The number of solutions of the equation
$$\tan x + \sec x = 2\cos x$$
, in $(0, \pi)$ is -

(A) 0. (B) 3. (C) 2. (D) 1.

64. If
$$\vec{a}$$
, \vec{b} and \vec{c} are non-coplanar vectors, then $(\vec{a} + \vec{b} - \vec{c}) \bullet (\vec{a} - \vec{b}) \times (\vec{b} - \vec{c}) =$

(A) $2[\vec{a} \ \vec{b} \ \vec{c}]$. (B) $[\vec{a} \ \vec{b} \ \vec{c}]$.

(A)
$$2\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$$
. (B) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$. (C) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$. (D) $3\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$.

 $\tan\left(2\tan^{-1}\frac{1}{5}-\frac{\pi}{4}\right) =$

 $(C) \quad \frac{x^2 + y^2}{2}.$

65.

(A)
$$\frac{17}{7}$$
 (B) $\frac{7}{17}$

(C)
$$-\frac{7}{17}$$
. (D) $-\frac{17}{7}$.

66. If
$$(1+i)(1+3i)...(1+\overline{2n-1}\ i) = x+iy$$
, then 1.5.13 ... $(2n^2-2n+1)=$

66. If
$$(1+i)(1+3i)...(1+2n-1i) = x+iy$$
, then 1.5.13 ... $(2n^2-2n+1) = x^2 + y^2$

(A)
$$x^2 + y^2$$
. (B) $\frac{x^2 + y^2}{2^n}$.

(A)
$$x^2 + y^2$$
. (B) $\frac{x^2 + y^2}{2^n}$.

(D) $2^n(x^2+y^2)$.

find more materials at www.educationobserver.com/forum101MA07 - B

(B) $x^2 + y^2 = 81$.

67. If
$$z = x + iy$$
 and $|z + 6| = |2z + 3|$, then -

(C)
$$x^2 + y^2 = 27$$
. (D) $x^2 + y^2 = 9$.

68. The condition for two circles
$$x^2 + y^2 + 2ax + c = 0$$
 and $x^2 + y^2 + 2by + c = 0$ to touch each other externally is -

(A) $x^2 + y^2 = 36$.

69.

70.

(A)
$$\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$$
.
(B) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c}$.
(C) $a + b = c$.
(D) $a^2 + b^2 = c$.

If
$$\alpha$$
, β and γ are the roots of $x^3 + ax^2 + b = 0$, then $\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix} = \frac{\alpha |\beta|}{|\gamma|} \frac{|\gamma|}{|\alpha|} \frac{|\alpha|}{|\alpha|} \frac{|\beta|}{|\alpha|} \frac{|\gamma|}{|\alpha|} \frac{|\alpha|}{|\alpha|} \frac{|\alpha|}$

(A)
$$a^2$$
. (B) a^3 . (C) a . (D) 0.

71. In any triangle ABC, if
$$\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$$
, then $|\underline{C}|$ is -

(A) 45°. (B) 90°.

(C) 4.

72. If
$$f(x) = x^2 - 1$$
 and $g(x) = 2x + 3$, then $(f \circ g \circ f)(1)$ is equal to -

(D) 5.

finadigitanomerymativersiasisinat www.educationobserver.com/forum [101MA07 - B

www.educationobserver.com/forum
$$\frac{13}{101MA07 - B}$$

73. The value of
$$\frac{1}{1 + \log_b a} + \frac{1}{1 + \log_a b}$$
 is -

74. In the group
$$\mathbb{Z}_7 - \{0\}$$
 under multiplication modulo 7, $2 \times (5^{-1} \times 4) =$

(A) 5. (B) 4.

(A) 3. (B) 4. (C) 3. (D) 1. The number of roots of the equation
$$\sqrt{x} + \sqrt{x - \sqrt{1 - x}} = 1$$
 (where \sqrt{x} is

76. The tangents from
$$P(4, 5)$$
 to the circle $x^2 + y^2 - 4x - 2y - 11 = 0$ meet it at A and B . If C is the centre of the circle, then the area of the quadrilateral $PACB$ is -

77.
$$\frac{1}{\tan 3\theta - \tan \theta} - \frac{1}{\cot 3\theta - \cot \theta} =$$

(B)
$$\tan 2\theta$$
.
(D) $\tan 4\theta$.

(A)
$$\cot 4\theta$$
. (B) $\tan 2\theta$. (C) $\cot 2\theta$. (D) $\tan 4\theta$.

(A)
$$\tan^{-1} \left(\frac{p^2 - 1}{2p} \right)$$
. (B) $\tan^{-1} \left(\frac{2p}{p^2 - 1} \right)$.

(C)
$$\sec^{-1}\left(\frac{p^2-1}{2p}\right)$$
. (D) $\sec^{-1}\left(\frac{2p}{p^2-1}\right)$.

$$(2p) (p^2-1)$$

$$(2p) (p^2-1)$$

$$(2p) (p^2-1)$$

$$(2p) (p^2-1)$$

$$(2p) (p^2-1)$$

$$(2p) (p^2-1)$$

$$(2p) (2p)$$

$$(2p) (2$$

79. If
$$\omega$$
 is an imaginary cube root of unity, then $(a+b)(a\omega+b\omega^2)(a\omega^2+b\omega) =$

(B) $a^3 - b^3$.

(D) $(a-b)^3$

79. If
$$\omega$$
 is an imaginary cube root of unity, then $(a+b)(a\omega+b\omega^2)(a\omega^2+b\omega^2)$

(A) $a^3 + b^3$.

(C) $(a+b)^3$.

futat Pigital Hitery Service http://dsease.dusgt.ac.en/ www.educationobserver.com/forum 101MA07-B

Q⁺ denotes the set of all positive rational numbers. Define * on Q⁺ by 80.

 $a*b = \frac{ab}{2}$ for all a, b in Q⁺. If (Q⁺, *) is a group, which of the following is/are true?

(A)
$$(Z_n, +_n)$$
 (B) $(Z, +)$ (C) (Z, \bullet) (D) $(R, +)$

82. If
$$f'(x) = \sqrt{x}$$
 and $f(1) = 2$, then $f(x)$ is -

(A) $-\frac{2}{3}(x\sqrt{x}+2)$.

(B) $\frac{3}{2}(x\sqrt{x}+2)$.

(C)
$$\frac{2}{3}(x\sqrt{x}+2)$$
. (D) $-\frac{3}{2}(x\sqrt{x}+2)$.

83. The curve
$$y = ax^3 + bx^2 + cx + d$$
 has a point of inflexion at $x = 1$, then -

(A) $a + b = 0$.

(B) $a + 3b = 0$.

(A)
$$a+b=0$$
.
(B) $a+3b=0$.
(C) $3a+b=0$.
(D) $3a+b=1$.

(1) If z is a complex number, then its reflection in the real axis is
$$\overline{z}$$
.

(1) If z is a complex number, then its reflection in the real axis

(2) The real part of
$$\frac{1-i}{1+i}$$
 is 2.

(2) The real part of
$$\frac{1}{1+i}$$
 is 2.
(3) $\operatorname{Re}(z) \leq |z|$.

(3)
$$\text{Re}(z) \le |z|$$
.
(4) Locus of $Z^2 = 1$ is $zy = 0$

(4) Locus of
$$Z^2 = 1$$
 is $xy = 0$.

(A) (1) and (2).

(C) (1) and (3).

$$us of Z = 1 is xy = 0.$$

find more materials at Cusat Digital Library Senzice http://dspace.cusat.ac.in/15 WWW.educationobserver.com/forum101MA07 - B

85. The area of the parallelogram determined by the sides
$$\vec{i} + 2\vec{j} + 3\vec{k}$$
 and $-3\vec{i} - 2\vec{j} + \vec{k}$ is -

(A)
$$6\sqrt{5}$$
.
(B) $3\sqrt{5}$.
(C) 6.
(D) $4\sqrt{5}$.

If the rank of the matrix
$$\begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -1 & 0 & \lambda \end{bmatrix}$$
 is 2, then λ is -

(A) 1.

(B) 2.

(C) 3.

(D) any real number.

86.

87. The curve
$$9y^2 = x^2(4-x^2)$$
 is symmetrical about -

(A) y-axis only.

(B) x-axis only.

(C) $y = x$.

(D) both axes.

(A) 6. (B) 2. (C) 3. (D) 0.
89. The value of c in Rolle's theorem for the function
$$f(x) = \cos \frac{x}{2}$$
 on $(\pi, 3\pi)$ is -

(A) 0. (B)
$$2\pi$$
. (C) $\frac{\pi}{2}$. (D) $\frac{3\pi}{2}$.

(C) 4π .

(A) 1 (B)
$$\frac{1}{\sqrt{2}\pi}$$
.

find more materials at Cusat Digital Library Service http://dspace.cusat.ac.in/16 www.educationobserver.com/forum

91. G is a group under a binary operation *. If
$$(a*b)^{-1} = a^{-1}*b^{-1}$$
, then -

92. The integrating factor of the differential equation
$$\frac{dy}{dx} - y \tan x = \cos x$$
 is -

(A)
$$\sec x$$
. (B) $\cos x$. (C) $e^{\tan x}$. (D) $\cot x$. The function $f(x) = e^x$ -

direction is -

(A)
$$4+3i$$
.

(B) $4-3i$.

(C) $3-4i$.

(D) $3+4i$.

95. The lines
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
 and $\frac{x-1}{-2} = \frac{y-2}{-4} = \frac{z-3}{-6}$ are -

(A) parallel. (B) intersecting. (C) skew. (D) coincident.

96. If
$$\vec{a}$$
 and \vec{b} are two unit vectors and θ is the angle between them, then $(\vec{a} + \vec{b})$ is a unit vector if -

96. If
$$a$$
 and b are two unit vectors and θ is the angle between them, then $(\vec{a} + \vec{b})$ is a unit vector if -

(A) $\theta = \frac{\pi}{2}$.

(B) $\theta = \frac{\pi}{4}$.

(B) $|A|^n$.

(D) |A|.

(a+b) is a unit vector if -

(A)
$$\theta = \frac{\pi}{3}$$
. (B) $\theta = \frac{\pi}{4}$.

(A)
$$\theta = \frac{\pi}{3}$$
. (B) $\theta = \frac{\pi}{4}$.

(C)
$$\theta = \frac{\pi}{2}$$
. (D) $\theta = \frac{2\pi}{3}$.

97. If A is a square matrix of order n, then
$$|adj|A$$
 is -

97. If A is a square matrix of order n, then
$$|adj|A$$
 is

(A) $|A|^2$.

(C) $|A|^{n-1}$.

93.

find the marker of the server at the server of the server

98. If
$$f(x) = \frac{A}{\pi} \cdot \frac{1}{16 + x^2}$$
, $-\infty < x < \infty$ is a p.d.f of a continuous random variable X, then the value of A is -

(A) 0. (B) 32. (C) -16. (D) -32.
100. The sum of the distances of any point on the ellipse
$$4x^2 + 9y^2 = 36$$
 from $(\sqrt{5},0)$ and $(-\sqrt{5},0)$ is -

100. The sum of the distances of any point on the ellipse
$$4x^{5} + 9y^{5} = 36$$
 from $(\sqrt{5},0)$ and $(-\sqrt{5},0)$ is -

(A) 4.
(B) 8.
(C) 6.
(D) 18.

(C) 6. (D) 18.

101. The value of
$$i+i^{22}+i^{23}+i^{24}+i^{25}$$
 is -

(A) i . (B) $-i$.

(A) i. (B)
$$-i$$
. (C) 1. (D) -1 . (D) -1 .

102. The value of
$$\left(\frac{-1+i\sqrt{3}}{2}\right)^{100} + \left(\frac{-1-i\sqrt{3}}{2}\right)^{100}$$
 is -

(A) 2. (B) 0.

(A) 2. (B) 0. (C) -1. (D) 1.
$$(C) -1 \cdot (C) = (C) \cdot (C$$

(A)
$$x$$
 (B) y (C) $x + y$ (D) xy

104.

(1)(2)

(3)

(4)

(C) (1) and (3).

The differential equation
$$\frac{dy}{dx} + y \sec^2 x = 0$$
 can be solved by -

(1) variable separable.

(D) (1), (2) and (3).

find more materials at www.educationobserver.com/forum 101MA07 - B If every element of a group G is its own inverse, then the element $a \neq e$ in G is 105.

106. In which region the curve
$$y^2(a+x) = x^2(3a-x)$$
 does not lie?

(A)
$$x > 0$$
.
(B) $0 < x < 3a$.
(C) $x < -a$ and $x > 3a$.
(D) $-a < x < 3a$.
107. For what value of x is the rate of increase of $x^3 - 2x^2 + 3x + 8$ is twi-

107. For what value of x is the rate of increase of
$$x^3 - 2x^2 + 3x + 8$$
 is twice the rate of increase of x?

(A) $\left(-\frac{1}{3}, -3\right)$.

(B) $\left(\frac{1}{3}, 3\right)$.

(C)
$$\left(-\frac{1}{3}, 3\right)$$
. (D) $\left(\frac{1}{3}, 1\right)$.

108. The directrix of the hyperbola
$$x^2 - 4(y-3)^2 = 16$$
 is -

(A)
$$y = \pm \frac{8}{\sqrt{5}}$$
. (B) $x = \pm \frac{8}{\sqrt{5}}$.

2 units.

(C) 4 units.

(A)

(C)
$$y = \pm \frac{\sqrt{5}}{8}$$
.
(D) $x = \pm \frac{\sqrt{5}}{8}$.
109. If $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$, then -

(A)
$$\vec{a}$$
 is parallel to \vec{b} . (B) \vec{a} is perpendicular to \vec{b} .

(C)
$$|\vec{a}| = |\vec{b}|$$
. (D) \vec{a} and \vec{b} are unit vectors.

110. The work done by the force
$$\vec{F} = \vec{i} + \vec{j} + \vec{k}$$
 acting on a particle, if the particle is displaced from A (3, 3, 3) to the point B (4, 4, 4) is -

(B)

3 units.

(D) 7 units.

find more materials at

www.educationobserver.com/forum

Cusat Digital Library Service http://dspace.cusat.ac.in/

101MA07 - B

111. In a system of 3 linear homogeneous equations with three unknowns, if $\Delta = 0$ and $\Delta_x = 0$, $\Delta_y \neq 0$ and $\Delta_z = 0$, then the system has -

- (A) unique solution.(B) two solutions.(C) infinitely many solutions.(D) no solution.
- 12. If a=2 , i and a=2. 3i then the points on the Argand diagram represen
- 112. If a = 3 + i and z = 2 3i, then the points on the Argand diagram representing az, 3az and -az are -
 - (A) the vertices of a right angled triangle.
 - (B) the vertices of an equilateral triangle.
 - (C) the vertices of an isosceles triangle.
 - (D) collinear.

(A) $26xe^{2x}$.

113.
$$\lim_{x \to \infty} \frac{x^2}{e^x} \text{ is -}$$

114. The particular integral of
$$(3D^2 + D - 14)y = 13e^{2x}$$
 is -

(C)
$$xe^{2x}$$
. (D) $\frac{x^2}{2}e^{2x}$.

115. If \vec{a} and \vec{b} are collinear and are in the opposite direction, then θ is -

(A) 0. (B)
$$\frac{\pi}{2}$$

(C)
$$\pi$$
. (D) $\frac{\pi}{4}$.

116. The value of
$$\int_{-\pi/2}^{\pi/2} \left(\frac{\sin x}{2 + \cos x} \right) dx$$
 is -

find more materials at www.educationobserver.com/forum 101MA07 - B Cusat Digital Library Service http://dspace.cusat.ac.in/

117. Which of the following is not an abelian group?

- (A) (Z, +).(B) $(Q - \{0\}, \bullet)$ (C) (G, *) where $G = \{e, a, b, c\}$ and * a binary operation defined on it. (D) The set of all 2×2 non-singular matrices under matrix
 - multiplication.
- 118. The eccentricity of the ellipse $4x^2 + y^2 - 8x - 6y = 3$ is -
- (A) $\frac{1}{\sqrt{2}}$.
 - (C) $\frac{\sqrt{3}}{4}$.
- The value of $\int_{0}^{1} x(1-x)^{4} dx$ is -
- (A) $\frac{1}{12}$.
 - (C) $\frac{1}{24}$.
- The rank of the lower triangular matrix 0 is -120.
- (A) 0. (C) 3. (D) 5.
- If $\frac{1-i}{1+i}$ is a root of the equation $ax^2 + bx + 1 = 0$, then (a, b) is -

 - (A) (1, 1). (B) (1, -1). (C) (0, 1)(D) (1, 0).

- 122. Which of the following is false?
 - (A) Every group of order 4 is abelian.
 - (B) The identity element is the only element of order 1 in a group.
 - (C) (Z, +) is an abelian group.
 - (D) (Z_n, \bullet_n) is non-abelian group.
- 123. A monoid becomes a group if it also satisfies the -
 - (A) closure axiom.

(B) associative axiom

(C) identity axiom.

- (D) inverse axiom.
- 124. If the projection of \vec{a} on \vec{b} and the projection of \vec{b} on \vec{a} are equal, then the angle between $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ is -
 - (A) $\frac{\pi}{2}$.

(B) $\frac{\pi}{3}$.

(C) $\frac{\pi}{4}$

- (D) $\frac{2\pi}{3}$
- 125. Which of the following is correct?
 - (A) An element of a group can have more than one inverse.
 - (B) If every element of a group is its own inverse, then the group is abelian.
 - (C) The set of all 2×2 real matrices forms a group under matrix multiplication.
 - (D) $(a*b)^{-1} = a^{-1}*b^{-1}$ for all $a, b \in G$.