CODE NO: NR422102 NR

2006 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY

IV B.TECH II SEMESTER SUPPLEMENTARY EXAMINATIONS FATIGUE AND FRACTURE MECHANICS (AERONAUTICAL ENGINEERING)

A mm/M any 2006

Apr/may 2000	TIME – 3 HOUR MARK – 80
Answer any FIVE Questions All Questions carry equal marks	
1. Explain various methods of reducing stress concentration am	ong various shapes and sizes of different members. [16]
2. (a) Distinguish clearly between Notch toughness, notch brittle	eness and notch sensitivity.
(b) What is notch sensitivity index.	
(c) Discuss the effect of	[16]
i. Surface condition &	
ii. stress concentration on fatigue.	
3. (a) Explain typical fatigue stress cycles with the help neat ske	tches.
(b) Represent fatigue data on a probability basis and explain it.	[8+8]
4. (a) Describe about stress fluctuations and cumulative damage	in fatigue failure.
(b) How cumulative fatigue is expressed?	
(c) Discuss woods theory of fatigue failure.	[4+4+8]
5. (a) Crack propagation rate, in general, depends on k, and F very popular why so?	the Paris law, which ignores the effect of R, is
(b) What is crack closure? Why does it happen?	
(c) Explain whether the predictions of crack growth accurate en know how.	ough for engineering applications with the present, $[4+6+6]$
6. (a) Why is a surface of a solid associated with surface energy free energy of surface of a metal	(or free energy)? What is an approximate value of the
(b) Actual energy required in a ductile material to create two ne higher than the surface energy of solids. Why so?	w surfaces through the crack growth is several orders [16]

7. (a) How does improved, alloy cleanliness develop the fracture toughness of the parts?

(b) How does the micro-structure of the materials optimize the fracture toughness?

8. A bar of a circular cross section is subjected to alternating tensile forces varying from a minimum of 200kN to a minimum of 500kN. It is to be manufactured of a material with an ultimate tensile strength of 900 MPa and an endurance limit of 700MPa. Determine the diameter of the bar using a safety factor of 3.5 related to ultimate tensile strength 4 related to endurance limit and a stress concentration factor of 1.65 for fatigue load. Use Goodman straight line as basis for design.