2006 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY

IV B.TECH II SEMESTER SUPPLEMENTARY EXAMINATIONS
 COMPUTER APPLICATIONS IN CHEMICAL ENGINEERING (CHEMICAL ENGINEERING)

APR/MAY 2006
TIME - 3 HOUR
MARK - 80

Answer any FIVE Questions
 All Questions carry equal marks

11. Solve by using Runge-Kutta 4th order method: $y^{\prime}=x 2+y 2$ with $y(0)=1, h=0.1$ in the interval [0,1].
12. Solve by Cramer's rule, the equations: $3 x 1+x 2-x 3=2, x 1+2 x 2+x 3=3,-x 1+x 2+4 x 3=$ 9. [16]
13. Write a computational procedure to solve the following equation by matrix inversion method $16 x+3 y+3 z=1 x+4 y+3 z=0 x+3 y+4 z=2$. [16]
14. Write a computer program, which uses the Newton-Raphson method for the two equation in two unknowns.
15. For the reaction $\mathrm{CO} 2(\mathrm{~g})+4 \mathrm{H} 2(\mathrm{~g})!2 \mathrm{H} 2 \mathrm{O}(\mathrm{g})+\mathrm{CH} 4(\mathrm{~g})$ the standard heat of reaction can be expressed as $\square H 0 T=\square H^{\prime}+\square T+(\square / 2) T 2+(\square / 3) T 3 ; \square H^{\prime}=-$
$148345 j ; \square=-62.54 ; \square=46.3510-3 ; \square=-7.21 \times 10-6$. Find the relevant temperature at which standard heat of reaction is equal to $-183950 j$ using iterative method. [16]
16. Thermal conductivity of the metal strip was measured at various time intervals during the heating and the values are given in the following table: Time,t(min) 123456 Temp., T(C) 7083 100124152190
If the relationship between the temperature, T and time, t is of the form $T=$ bet/4+aestimate the coefficients (a and b) using least square regression technique and esti- mate the temperature at $t=8 \mathrm{~min}$. [16]
17. (a) Illustrate the importance of optimization techniques in chemical engineering giving at least four examples.
(b) Given the function $f(x)=80 / x+20 x+20$, find the stationary points and test them for maxima or minima.
[8+8]
18. Find the minimum of $y=10 x 2-3 x+5$ using Dichotomous search subject to restriction $g(x)=$ x25】 10. Consider 6 calculations only.
