SEAL

RSM-08

Optional Paper

Subject: CIVIL ENGINEERING-I

सिविल अभियांत्रिकी-1

Total Pages: 32
Time: 3 Hours

Maximum Marks: 200

Roll No.					
		(In I	igures	()	
Roll No.	_ <u>_</u>			<u>,, </u>	
,			 .		

(In Words)

(Signature of the Invigilator)

FOR EXAMINER'S USE ONLY										
Marks Obtained										
	RT-A	PA	RT-B	PA	RT-C					
Q.	Marks	Q.	Marks	Q.	Marks					
No.	Obtained	No.	Obtained,		Obtained					
1		21		33						
2		22		34						
3		23		35						
4		24		_ 36						
5		25		37						
6		26		38						
7		27		39						
8		28								
9	l	29								
10		30								
11		31								
12		32								
13										
14										
15										
16				_						
17	<u> </u>									
18				_						
19										
20										
Total		Total		Total						

(Signature of the Candidate)

INSTRUCTIONS FOR CANDIDATES

- 1. Write your Roll Number in the space provided on the Top of this page.
- 2. Read the instructions given inside carefully.
- Two pages are attached at the end of the Test Booklet for rough work.
- 4. You should return the Test Booklet to the Invigilator at the end of the examination and should not carry any paper with you outside the examination hall.
- A candidate found creating disturbance at the examination centre or misbehaving with Invigilation Staff or cheating will render himself liable to disqualification.

Marks	Obtained	1:
MINIMA	Outaince	Ι,

Part-A:

Part-B:

Part-C;

Total:

(Marks in Words)

(Signature of Examiner)

(Signature of Head Examiner)

परीक्षार्थियों के लिए निर्देश

- (1) पहले पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिये ।
- (2) अन्दर दिये गये निर्देश ध्यानपूर्वक पढ़ें ।
- (3) उत्तर-पुस्तिका के अन्त में कच्चा काम (Rough Work) करने के लिए दो पेज (Pages) दिये हुए हैं ।
- (4) आपको परीक्षा के समय की समाप्ति पर उत्तर-पुस्तिका को निरीक्षक महोदय को लौटाना होगा और परीक्षा भवन से बाहर जाते समय कोई भी कागज अपने साथ नहीं ले जाना होगा।
- (5) यदि कोई अभ्यर्थी परीक्षा केन्द्र पर व्यवधान उत्पन्न करता है या वीक्षण स्टाफ के साथ दुर्व्यवहार करता है अथवा वंचनापूर्ण कार्य करता है तो वह स्वयं ही अयोग्यता के लिए उत्तरदायी होगा।

RSM-08

CIVIL ENGINEERING-I

सिविल अभियांत्रिकी-I

Time: Three Hours

Maximum Marks: 200

समय : तीन घण्टे

पूर्णांक: 200

IMPORTANT NOTE

महत्त्वपूर्ण निर्देश

- (a) The question paper has been divided into three parts Part A, B and C. The number of questions to be attempted and their marks are indicated in each part. प्रश्न-पत्र "अ", "ब " और "स " तीन भागों में विभाजित है । प्रत्येक भाग में से किये जाने वाले प्रश्नों की संख्या और उनके अंक उस भाग में अंकित किये गये हैं ।
- (b) Attempt answers either in Hindi or English, not in both. उत्तर हिन्दी या अंग्रेजी भाषा में से किसी एक में दीजिये, दोनों में नहीं।
- (c) Write the answers in the space provided below each question. Additional Booklet or Blank Paper will neither be provided not allowed. प्रत्येक प्रश्न के नीचे दिये हुए स्थान में ही उत्तर दीजिये । अतिरिक्त पुस्तिका या कोरा कागज़ न तो पृथक् से दिया जायेगा और न ही उसकी अनुमति दी जायेगी ।
- (d) The candidates should not write the answers beyond the limit of words prescribed in Parts A, B and C, failing which the marks can be deducted. अभ्यर्थियों को भाग "अ", "ब " और "स " में अपने उत्तर निर्धारित शब्दों की सीमा से अधिक में नहीं लिखने चाहिए । इसका उल्लंघन करने पर अंक काटे जा सकते हैं ।
- (e) In case candidate makes any identification mark i.e. Roll No./Name/Telephone No./Mobile No. or any other marking either outside or inside the answer book, it would be treated as using unfair means. The candidature of the candidate for the entire examinations shall be rejected by the Commission, if he is found doing so. अभ्यर्थी द्वारा उत्तर पुस्तिका के अन्दर अथवा बाहर पहचान चिह्न यथा रोल नम्बर/नाम/मोबाईल नम्बर/टेलिफोन नम्बर या अन्य कोई निशान इत्यादि लिखे जाने अथवा अंकित किये जाने को अनुचित साधन का प्रयोग माना जायेगा । आयोग द्वारा ऐसा पाये जाने पर अभ्यर्थी की सम्पूर्ण परीक्षा में अभ्यर्थिता रदद कर दी जायेगी ।

PART - A भाग - अ

Mar	rks : 40	
Note		ร:4
1404	e: Attempt all the twenty questions. Each question carries 2 marks. Answer should nexceed 15 words.	ot
नोट	1 1 2 2 2 2	ना
1.	Define proof stress. प्रमाण प्रतिबल को परिभाषित कोजिए ।	
·		
2.	What is the relation between modulus of elasticity E and bulk modulus K ? प्रत्यास्थता गुणांक (E) तथा आयतन प्रत्यास्थता गुणांक (K) में क्या सम्बन्ध है ?	
3.	What do you understand by proof resilience ? प्रमाण विकार ऊर्जा से क्या समझते हैं ?	· · · · · · · · · · · · · · · · · · ·
4.	What will be elongation of a rod due to its own weight?	
	छड़ के अपने भार से छड़ में कितना प्रसार होगा ?	
 5.	What factors affect the rise of liquid in a capillary tube ?	
	किसी केशिका नली द्रव का उत्थान किन तत्त्वों पर निर्भर करता है ?	····-

7. What is Reynold's number, how it defines the type of flow? रेनोल्ड नम्बर क्या है तथा यह प्रवाह के प्रकार को कैसे परिभाषित करता है? 8. If a floating ship in a sea displaces the 120 m³ of water and specific gravity of sea water is 1.03, what is the weight of ship? समुद्र में तैरते हुए जहाज द्वारा अगर 120 m³ पानी हटाया जाता है तथा समुद्र के पानी का आपेक्षिक घनत्व 1.03 है, तो जहाज का भार क्या है? 9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा? 10. What is the effect of increasing compacting effort on OMC and MDD? यदि गृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर क्या प्रमाव पड़ता है?	6.	What is a continuity equation of flow?
8. If a floating ship in a sea displaces the 120 m³ of water and specific gravity of sea water is 1.03, what is the weight of ship? समुद्र में तैरते हुए जहाज द्वारा अगर 120 m³ पानी हटाया जाता है तथा समुद्र के पानी का आपेक्षिक घनत्व 1.03 है, तो जहाज का थार क्या है ? 9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा ? 10. What is the effect of increasing compacting effort on OMC and MDD? पदि भृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		प्रवाह सातत्य समीकरण क्या है ?
8. If a floating ship in a sea displaces the 120 m³ of water and specific gravity of sea water is 1.03, what is the weight of ship? समुद्र में तैरते हुए जहाज द्वारा अगर 120 m³ पानी हटाया जाता है तथा समुद्र के पानी का आपेक्षिक घनत्व 1.03 है, तो जहाज का थार क्या है ? 9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा ? 10. What is the effect of increasing compacting effort on OMC and MDD? पदि भृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
8. If a floating ship in a sea displaces the 120 m³ of water and specific gravity of sea water is 1.03, what is the weight of ship? समुद्र में तैरते हुए जहाज द्वारा अगर 120 m³ पानी हटाया जाता है तथा समुद्र के पानी का आपेक्षिक घनत्व 1.03 है, तो जहाज का थार क्या है ? 9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा ? 10. What is the effect of increasing compacting effort on OMC and MDD? पदि भृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
8. If a floating ship in a sea displaces the 120 m³ of water and specific gravity of sea water is 1.03, what is the weight of ship? समुद्र में तैरते हुए जहाज द्वारा अगर 120 m³ पानी हटाया जाता है तथा समुद्र के पानी का आपेक्षिक घनत्व 1.03 है, तो जहाज का थार क्या है ? 9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा ? 10. What is the effect of increasing compacting effort on OMC and MDD? पदि भृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
8. If a floating ship in a sea displaces the 120 m³ of water and specific gravity of sea water is 1.03, what is the weight of ship? समुद्र में तैरते हुए जहाज द्वारा अगर 120 m³ पानी हटाया जाता है तथा समुद्र के पानी का आपेक्षिक घनत्व 1.03 है, तो जहाज का थार क्या है ? 9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा ? 10. What is the effect of increasing compacting effort on OMC and MDD? पदि भृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
8. If a floating ship in a sea displaces the 120 m³ of water and specific gravity of sea water is 1.03, what is the weight of ship? समुद्र में तैरते हुए जहाज द्वारा अगर 120 m³ पानी हटाया जाता है तथा समुद्र के पानी का आपेक्षिक घनत्व 1.03 है, तो जहाज का थार क्या है ? 9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा ? 10. What is the effect of increasing compacting effort on OMC and MDD? पदि भृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
8. If a floating ship in a sea displaces the 120 m³ of water and specific gravity of sea water is 1.03, what is the weight of ship? समुद्र में तैरते हुए जहाज द्वारा अगर 120 m³ पानी हटाया जाता है तथा समुद्र के पानी का आपेक्षिक घनत्व 1.03 है, तो जहाज का थार क्या है ? 9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा ? 10. What is the effect of increasing compacting effort on OMC and MDD? पदि भृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर	7	What is Reynold's number, how it defines the type of flow?
8. If a floating ship in a sea displaces the 120 m³ of water and specific gravity of sea water is 1.03, what is the weight of ship? समुद्र में तेरते हुए जहाज द्वारा अगर 120 m³ पानी हटाया जाता है तथा समुद्र के पानी का आपेक्षिक घनत्व 1.03 है, तो जहाज का भार क्या है ? 9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा? 10. What is the effect of increasing compacting effort on OMC and MDD? यदि गृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर	•	· · · · · · · · · · · · · · · · · · ·
is 1.03, what is the weight of ship? समृद्र में तैरते हुए जहाज द्वारा अगर 120 m³ पानी हटाया जाता है तथा समृद्र के पानी का आपेक्षिक घनत्व 1.03 है, तो जहाज का भार क्या है? 9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृद्रा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा? 10. What is the effect of increasing compacting effort on OMC and MDD? यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		रनाएंड नम्बर पद्मा है तथा यह प्रवाह के प्रकार का कक्ष पारमावित करता है ?
is 1.03, what is the weight of ship? समृद्र में तैरते हुए जहाज द्वारा अगर 120 m³ पानी हटाया जाता है तथा समृद्र के पानी का आपेक्षिक घनत्व 1.03 है, तो जहाज का भार क्या है? 9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृद्रा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा? 10. What is the effect of increasing compacting effort on OMC and MDD? यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
is 1.03, what is the weight of ship? समृद्र में तैरते हुए जहाज द्वारा अगर 120 m³ पानी हटाया जाता है तथा समृद्र के पानी का आपेक्षिक घनत्व 1.03 है, तो जहाज का भार क्या है? 9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृद्रा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा? 10. What is the effect of increasing compacting effort on OMC and MDD? यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
is 1.03, what is the weight of ship? समृद्र में तैरते हुए जहाज द्वारा अगर 120 m³ पानी हटाया जाता है तथा समृद्र के पानी का आपेक्षिक घनत्व 1.03 है, तो जहाज का भार क्या है? 9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृद्रा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा? 10. What is the effect of increasing compacting effort on OMC and MDD? यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
is 1.03, what is the weight of ship? समृद्र में तैरते हुए जहाज द्वारा अगर 120 m³ पानी हटाया जाता है तथा समृद्र के पानी का आपेक्षिक घनत्व 1.03 है, तो जहाज का भार क्या है? 9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृद्रा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा? 10. What is the effect of increasing compacting effort on OMC and MDD? यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
is 1.03, what is the weight of ship? समृद्र में तैरते हुए जहाज द्वारा अगर 120 m³ पानी हटाया जाता है तथा समृद्र के पानी का आपेक्षिक घनत्व 1.03 है, तो जहाज का भार क्या है? 9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृद्रा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा? 10. What is the effect of increasing compacting effort on OMC and MDD? यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
समुद्र में तैरते हुए जहाज द्वारा अगर 120 m³ पानी हटाया जाता है तथा समुद्र के पानी का आपेक्षिक घनत्व 1.03 है, तो जहाज का भार क्या है ? 9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा ? 10. What is the effect of increasing compacting effort on OMC and MDD? यदि भृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर	8.	
9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा? 10. What is the effect of increasing compacting effort on OMC and MDD? यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शृष्क घनत्व (MDD) पर		
9. What would be void ratio of fully saturated soil whose water content is 40% and specific gravity is 2.7? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा? 10. What is the effect of increasing compacting effort on OMC and MDD? यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शृष्क घनत्व (MDD) पर		
gravity is 2.7 ? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा ? 10. What is the effect of increasing compacting effort on OMC and MDD ? यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		ता जहाज का मार क्या ह !
gravity is 2.7 ? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा ? 10. What is the effect of increasing compacting effort on OMC and MDD ? यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
gravity is 2.7 ? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा ? 10. What is the effect of increasing compacting effort on OMC and MDD ? यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
gravity is 2.7 ? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा ? 10. What is the effect of increasing compacting effort on OMC and MDD ? यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
gravity is 2.7 ? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा ? 10. What is the effect of increasing compacting effort on OMC and MDD ? यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
gravity is 2.7 ? एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा ? 10. What is the effect of increasing compacting effort on OMC and MDD ? यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
एक पूर्णतया संतृप्त मृदा जिसका जलांश 40% तथा आपेक्षिक घनत्व 2.7 है तो उसका रिक्तता अनुपात क्या होगा ? 10. What is the effect of increasing compacting effort on OMC and MDD ? यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर	9.	What would be void ratio of fully saturated soil whose water content is 40% and specific
10. What is the effect of increasing compacting effort on OMC and MDD ? यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क धनत्व (MDD) पर		
यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		एक पूर्णतया संतृष्त मृदा जिसका जलारा ४०% तथा आपक्षिक धनत्व २.७ ह तो उसका रिक्तता अनुपात क्या हागा ?
यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर		
यदि मृदा में कुटाई ऊर्जा को बढ़ाया जाता है तो इसका अनुकूलतम जलांश (OMC) व शुष्क घनत्व (MDD) पर	4.0	
याद मृदी में कुटाई ऊर्जी की बढ़ाया जाती है तो इसका अनुकूलतम जलाश (OMC) व शुष्क घनत्व (MDD) पर क्या प्रभाव पड़ता है ?	LU.	
क्या प्रमाव पड़ता ह ?		याद मृदा म कुटाइ ऊजा की बढ़ाया जाता है तो इसका अनुकूलतम जलाश (OMC) व शुष्क घनत्व (MDD) पर
		क्या प्रमाव पड़ता ह ?

11.	Define the D_{10} and D_{60} in a soil.
	किसी मृदा के लिए ${f D_{10}}$ व ${f D_{60}}$ को परिभाषित कीजिए ।
	- 10 00
<u></u>	
12.	If a soil contains percentage of fines between 5–12%, what would be its symbol? यदि किसी मृदा में महीन कणों का प्रतिशत 5–12% है तो इसका चिह्न क्या होगा?
	
•	
13.	Under what condition you will test the soil for shear strength parameter to be used for foundation design? नींव अभिकल्पन के लिए अपरूपण सामर्थ्य स्थिरांक ज्ञात करने के लिए मृदा का जल निकासी की किस अवस्था में परीक्षण करेंगे?
14.	Write expression for depth of tension crack in cohesive soils. महीन कर्णो वाली मृदा में तनाव दरार की गहराई का सूत्र लिखिए ।
 15.	What is the effect on value of effective stress if water table is lowered?
iJ.	अगर जल तल नीचे जाता है तो प्रभावी प्रतिबल के मान पर क्या प्रभाव होता है ?

16.	For what range of size of soil particles the Stoke's law is valid? मृदा के किन आकार वाले कणों के लिए स्टोक नियम लागू होता है ?
17.	What assumption regarding the joints of truss is made for analysis of forces in members? ढाँचों के अवयवों में बल विश्लेषण के लिए इसके जोड़ों के लिए क्या कल्पनाएँ की जाती हैं?
18.	What is point of contraflexure and which type beams it occurs ? बंकन परिवर्तन बिन्दु क्या है तथा किस प्रकार की धरण में यह उत्पन्न होता है ?
19.	What is cover in RCC structure and how this is decided ? प्रबलित सीमेन्ट कंक्रीट संरचनाओं में ढकान क्या होता है तथा किस आधार पर इसका निर्णय किया जाता है ?
20.	What is the concept behind limit state design ? सीमांत अवस्था अभिकल्पन के पीछे क्या अवधारणा है ?

PART - B भाग -- ब

lviar!	s : 60	ह : 6
Note	exceed 50 words.	
નાટ	: समस्त 12 प्रश्नों के उत्तर दीजिये । प्रत्येक प्रश्न के 5 अंक निर्धारित हैं । उत्तर 50 शब्दों से अधिक नहीं ह चाहिए ।	ोना
21.	Write the Bernoulli's equation and its limitations. बरनौली समीकरण एवं इसकी सीमाएँ लिखिए ।	
		
<u> </u>		
22.	What are the conditions of equilibrium of Floating bodies? What is the importance netacentric height?	of
	रने वाली वस्तुओं की संतुलन की अवस्थाएँ क्या हैं ? आप्लव केन्द्र की ऊँचाई का महत्त्व क्या है ?	
· · · · · ·		
	·	

Explain the relation between linear and shear strain. रेखीय एवं अपरूपण विकृति के सम्बन्ध की व्याख्या कीजिए । 24. Explain height of solid method for determination of void ratio. रिक्तता अनुगत ज्ञात करने के लिए 'ठोस कणों की ऊँचाई' विधि का वर्णन कीजिए।		
Explain the relation between linear and shear strain. रेखीय एवं अपरूपण विकृति के सम्बन्ध की व्याख्या कीजिए ।		
Explain the relation between linear and shear strain. रेखीय एवं अपरूपण विकृति के सम्बन्ध की व्याख्या कीजिए । Explain height of solid method for determination of void ratio. रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णों की ऊँचाई' विधि का वर्णन कीजिए।		
Explain the relation between linear and shear strain. रेखीय एवं अपरूपण विकृति के सम्बन्ध की व्याख्या कीजिए । 4. Explain height of solid method for determination of void ratio. रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णों की ऊँचाई' विधि का वर्णन कीजिए।		
Explain the relation between linear and shear strain. रेखीय एवं अपरूपण विकृति के सम्बन्ध की व्याख्या कीजिए । 4. Explain height of solid method for determination of void ratio. रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णों की ऊँचाई' विधि का वर्णन कीजिए।		
Explain the relation between linear and shear strain. रेखीय एवं अपरूपण विकृति के सम्बन्ध की व्याख्या कीजिए । 4. Explain height of solid method for determination of void ratio. रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णों की ऊँचाई' विधि का वर्णन कीजिए।		
Explain the relation between linear and shear strain. रेखीय एवं अपरूपण विकृति के सम्बन्ध की व्याख्या कीजिए । 4. Explain height of solid method for determination of void ratio. रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णों की ऊँचाई' विधि का वर्णन कीजिए।	-	
रेखीय एवं अपरूपण विकृति के सम्बन्ध की व्याख्या कीजिए । 4. Explain height of solid method for determination of void ratio. रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कणों की ऊँचाई' विधि का वर्णन कीजिए ।		
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो को ऊचाई' विधि का वर्णन काजिए ।		Explain the relation between linear and shear strain. रेखीय एवं अपरूपण विकृति के सम्बन्ध की व्याख्या कीजिए ।
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो की ऊचाई' विधि का वर्णन काजिए ।		
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो की ऊचाई' विधि का वर्णन काजिए ।	_	
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो की ऊचाई' विधि का वर्णन काजिए ।	_	
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो को ऊचाई' विधि का वर्णन काजिए ।		
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो को ऊचाई' विधि का वर्णन काजिए ।		
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो को ऊचाई' विधि का वर्णन काजिए ।	_	
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो को ऊचाई' विधि का वर्णन काजिए ।		
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो की ऊचाई' विधि का वर्णन काजिए ।		
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो को ऊचाई' विधि का वर्णन काजिए ।	_	
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो की ऊचाई' विधि का वर्णन काजिए ।		
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो को ऊचाई' विधि का वर्णन काजिए ।		
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो को ऊचाई' विधि का वर्णन काजिए ।		
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो की ऊचाई' विधि का वर्णन काजिए ।	_	
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो की ऊचाई' विधि का वर्णन काजिए ।		
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो की ऊचाई' विधि का वर्णन काजिए ।		
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो की ऊचाई' विधि का वर्णन काजिए ।		
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो की ऊचाई' विधि का वर्णन काजिए ।		
रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कर्णो की ऊचाई' विधि का वर्णन काजिए ।		
	4	. Explain height of solid method for determination of void ratio. रिक्तता अनुपात ज्ञात करने के लिए 'ठोस कणों की ऊँचाई' विधि का वर्णन कीजिए ।

25. Explain effect of ground water table in the bearing capacity of soil. मृदा की धारण क्षमता पर भू-जल तल के प्रभाव का वर्णन कीजिए ।					
25. Explain effect of ground water table in the bearing capacity of soil. मृदा की धारण क्षमता पर भू-जल तल के प्रभाव का वर्णन कीजिए ।					
25. Explain effect of ground water table in the bearing capacity of soil. मृदा की धारण क्षमता पर भू-जल तल के प्रभाव का वर्णन कीजिए ।					
25. Explain effect of ground water table in the bearing capacity of soil. मृदा की धारण क्षमता पर भू-जल तल के प्रभाव का वर्णन कीजिए ।					
25. Explain effect of ground water table in the bearing capacity of soil. मृदा की धारण क्षमता पर भू-जल तल के प्रभाव का वर्णन कीजिए ।					
25. Explain effect of ground water table in the bearing capacity of soil. मृदा की धारण क्षमता पर भू-जल तल के प्रभाव का वर्णन कीजिए ।		- '			
25. Explain effect of ground water table in the bearing capacity of soil. मृदा की धारण क्षमता पर भू-जल तल के प्रभाव का वर्णन कीजिए ।		· · · · · · · · · · · · · · · · · · ·			
25. Explain effect of ground water table in the bearing capacity of soil. मृदा की धारण क्षमता पर भू-जल तल के प्रभाव का वर्णन कीजिए ।					
मृदा की धारण क्षमता पर भू-जल तल के प्रभाव का वर्णन कीजिए ।					
मृदा की धारण क्षमता पर भू-जल तल के प्रभाव का वर्णन कीजिए ।					
मृदा की धारण क्षमता पर भू-जल तल के प्रभाव का वर्णन कीजिए ।					
		मृदा की धारण क्षमता पर भू-जल तल के प्रभाव का वर्णन कीजिए ।			
			·		
					~
					
			-		
······································		·.			
26. Why a vertical cut up to certain depth is possible in a cohesive soil?	26	Why a vertical cut up to certain depth is possible in a cohecive soil ?			
संसंजक प्रकार की मृदाओं में एक सीमा तक ऊर्ध्वाधर कटाव क्यों संभव है ?					

		···-					
				· · . · . · . · . · . · . ·			
	<u> </u>				<u> </u>	, .	
							,
		· · · · · · · · · · · · · · · · · · ·				<u> </u>	
						·	
<u></u>	· · · · · · · · · · · · · · · · · · ·						
-							
remoulded अविक्षुब्ध सुग्र	stress-strain I sensitive soft प्राही संसंजक मृदा, वन कीजिए ।	clay.					
remoulded	l sensitive soft प्राही संसंजक मृदा,	clay.					
remoulded अविक्षुब्ध सुग्र	l sensitive soft प्राही संसंजक मृदा,	clay.					
remoulded अविक्षुब्ध सुग्र	l sensitive soft प्राही संसंजक मृदा,	clay.					
remoulded अविक्षुब्ध सुग्र	l sensitive soft मही संसंजक मृदा, बत कीजिए ।	clay. असुग्राही संसंजक	ज्ञमृदा तथा उपर -	नक्षक सुग्राही र	प्तंसंजक मृष		
remoulded अविक्षुब्ध सुग्र	l sensitive soft मही संसंजक मृदा, बत कीजिए ।	clay.	ज्ञमृदा तथा उपर -	नक्षक सुग्राही र	प्तंसंजक मृष		
remoulded अविक्षुब्ध सुग्र	l sensitive soft मही संसंजक मृदा, बत कीजिए ।	clay. असुग्राही संसंजक	ज्ञमृदा तथा उपर -	नक्षक सुग्राही र	प्तंसंजक मृष		
remoulded अविक्षुब्ध सुग्र	l sensitive soft मही संसंजक मृदा, बत कीजिए ।	clay. असुग्राही संसंजक	ज्ञमृदा तथा उपर -	नक्षक सुग्राही र	प्तंसंजक मृष		
remoulded अविक्षुब्ध सुग्र	l sensitive soft मही संसंजक मृदा, बत कीजिए ।	clay. असुग्राही संसंजक	ज्ञमृदा तथा उपर -	नक्षक सुग्राही र	प्तंसंजक मृष		
remoulded अविक्षुब्ध सुग्र	l sensitive soft मही संसंजक मृदा, बत कीजिए ।	clay. असुग्राही संसंजक	ज्ञमृदा तथा उपर -	नक्षक सुग्राही र	प्तंसंजक मृष		
remoulded अविक्षुब्ध सुग्र	l sensitive soft मही संसंजक मृदा, बत कीजिए ।	clay. असुग्राही संसंजक	ज्ञमृदा तथा उपर -	नक्षक सुग्राही र	प्तंसंजक मृष		
remoulded अविक्षुब्ध सुग्र	l sensitive soft मही संसंजक मृदा, बत कीजिए ।	clay. असुग्राही संसंजक	ज्ञमृदा तथा उपर -	नक्षक सुग्राही र	प्तंसंजक मृष		
remoulded अविक्षुब्ध सुग्र	l sensitive soft मही संसंजक मृदा, बत कीजिए ।	clay. असुग्राही संसंजक	ज्ञमृदा तथा उपर -	नक्षक सुग्राही र	प्तंसंजक मृष		
remoulded अविक्षुब्ध सुग्र	l sensitive soft मही संसंजक मृदा, बत कीजिए ।	clay. असुग्राही संसंजक	ज्ञमृदा तथा उपर -	नक्षक सुग्राही र	प्तंसंजक मृष		
remoulded अविक्षुब्ध सुग्र	l sensitive soft मही संसंजक मृदा, बत कीजिए ।	clay. असुग्राही संसंजक	ज्ञमृदा तथा उपर -	नक्षक सुग्राही र	प्तंसंजक मृष		
remoulded अविक्षुब्ध सुग्र	l sensitive soft मही संसंजक मृदा, बत कीजिए ।	clay. असुग्राही संसंजक	ज्ञमृदा तथा उपर -	नक्षक सुग्राही र	प्तंसंजक मृष		
remoulded अविक्षुब्ध सुग्र	l sensitive soft मही संसंजक मृदा, बत कीजिए ।	clay. असुग्राही संसंजक	ज्ञमृदा तथा उपर -	नक्षक सुग्राही र	प्तंसंजक मृष		

11 P.T.O.

	एकल ए	वं दोहरे प्रबलित कंक्रीट धरन खण्डों में बलशून्य रेखा ज्ञात करने का सूत्र लिखें तथा इन	में अंतर बताएँ
	•	The second section of the sect	1111 - 1111X
-			
_			
			<u></u>
-			
			· · · · · · · · · · · · · · · · · · ·
_			
_			
		the values for following as IS 456-2000:	
	` '	Minimum steel in tension.	
	` '	Minimum steel in shear.	
		Minimum cover.	
		Minimum Band length in tension.	
		मानक 456-2000 के अनुसार निम्न के मान लिखिए :	
	(i) 국	यूनतम इस्पात तनाव में ।	
	(ii) 국	यूनतम इस्पात अपरूपण में ।	
	(iii) न्यू	यूनतम ढकान ।	
	(iv) तन	नाव में छड़ों की न्यूनतम चढ़ाव लम्बाई ।	
_		·	
_			
	•		

		·
30.	Write the principal step in the design of angle as compression member. किसी एंगल के संपीडन अवयव के रूप में अभिकल्पन के मुख्य बिन्दु लिखिए ।	
	· · · · · · · · · · · · · · · · · · ·	
:		
·		
		···
31.	Write Muller-Breslau principle and its application. मुल्लर-ब्रेस्ला सिद्धांत व इसके अनुप्रयोग लिखिए-।	

13 P.T.O.

			.,.		
		<u> </u>			
					-
				<u>.</u>	··········
					
					
	•				
· · · · · · · · · · · · · · · · · · ·		··· ·	-····		
		prestressed concre लिए प्रतिबल आरेख द्व			iagram.
				ताइये ।	iagram.
				ताइये ।	iagram.
				ताइये ।	iagram.
				ताइये ।	iagram.
				ताइये ।	iagram.
				ताइये ।	iagram.
				ताइये ।	iagram.

PART - C भाग - स

Marks : 100

Note: Attempt any 5 questions. Each question carries 20 marks. Answer should not exceed 200 words.

नोट : कोई से 5 प्रश्न कीजिये । प्रत्येक प्रश्न के 20 अंक निर्धारित हैं । उत्तर 200 शब्दों से अधिक नहीं होना चाहिये ।

33. Determine the angle of rotation and deflection at the free end of a cantilever beam AB with a uniform load wt/m acting over the middle third span.

एक बाहुधरण AB के मुक्त सिरे पर घूर्णन व विक्षेप ज्ञात कीजिए जिसके मध्य तृतीय भाग पर एक wt/m का समान वितरित भार कार्य कर रहा हो ।

				<u>.</u>		
						
	<u>.</u>					
				"		
		· · · · ·				
	<u>.</u>					
-		 -				
			 -	· · · · · ·		
	·-··	*****			- · · · · · · · · · · · · · · · · · · ·	
	<u>.</u>	•		 -		
						
		·		··		
		·				
·	<u></u> -					
	<u> </u>					
			·	•		
			<u>.</u>			
		·			······································	
			. ,.		*************************************	
				·		
						
						
	-		·		· · ·	
	·	·				
•						
						
			·	·		
			 .	·		
				•		

34. For water supply in a city pipe of diameter 'D' is required but this size of pipe available therefore, two smaller size available pipes are proposed to be used in pa What would be the size of smaller pipes in terms of size of bigger pipe 'D'? एक शहर में जल वितरण के लिए 'D' व्यास के पाईप की आवश्यकता है परंतु इस आकार का पाईप उपलब्ध के कारण, छोटे आकार के दो पाईप समानान्तर प्रयोग किया जाना प्रस्तावित किया जाता है । छोटे पाईप का बड़े पाईप के आकार 'D' के संदर्भ क्या होगा ?	
available therefore, two smaller size available pipes are proposed to be used in pa What would be the size of smaller pipes in terms of size of bigger pipe 'D'? एक शहर में जल वितरण के लिए 'D' व्यास के पाईप की आवश्यकता है परंतु इस आकार का पाईप उपलब्ध के कारण, छोटे आकार के दो पाईप समानान्तर प्रयोग किया जाना प्रस्तावित किया जाता है। छोटे पाईप का	
available therefore, two smaller size available pipes are proposed to be used in pa What would be the size of smaller pipes in terms of size of bigger pipe 'D'? एक शहर में जल वितरण के लिए 'D' व्यास के पाईप की आवश्यकता है परंतु इस आकार का पाईप उपलब्ध के कारण, छोटे आकार के दो पाईप समानान्तर प्रयोग किया जाना प्रस्तावित किया जाता है। छोटे पाईप का	
available therefore, two smaller size available pipes are proposed to be used in pa What would be the size of smaller pipes in terms of size of bigger pipe 'D'? एक शहर में जल वितरण के लिए 'D' व्यास के पाईप की आवश्यकता है परंतु इस आकार का पाईप उपलब्ध के कारण, छोटे आकार के दो पाईप समानान्तर प्रयोग किया जाना प्रस्तावित किया जाता है। छोटे पाईप का	
available therefore, two smaller size available pipes are proposed to be used in pa What would be the size of smaller pipes in terms of size of bigger pipe 'D'? एक शहर में जल वितरण के लिए 'D' व्यास के पाईप की आवश्यकता है परंतु इस आकार का पाईप उपलब्ध के कारण, छोटे आकार के दो पाईप समानान्तर प्रयोग किया जाना प्रस्तावित किया जाता है। छोटे पाईप का	
available therefore, two smaller size available pipes are proposed to be used in pa What would be the size of smaller pipes in terms of size of bigger pipe 'D'? एक शहर में जल वितरण के लिए 'D' व्यास के पाईप की आवश्यकता है परंतु इस आकार का पाईप उपलब्ध के कारण, छोटे आकार के दो पाईप समानान्तर प्रयोग किया जाना प्रस्तावित किया जाता है। छोटे पाईप का	
available therefore, two smaller size available pipes are proposed to be used in pa What would be the size of smaller pipes in terms of size of bigger pipe 'D'? एक शहर में जल वितरण के लिए 'D' व्यास के पाईप की आवश्यकता है परंतु इस आकार का पाईप उपलब्ध के कारण, छोटे आकार के दो पाईप समानान्तर प्रयोग किया जाना प्रस्तावित किया जाता है। छोटे पाईप का	
available therefore, two smaller size available pipes are proposed to be used in pa What would be the size of smaller pipes in terms of size of bigger pipe 'D'? एक शहर में जल वितरण के लिए 'D' व्यास के पाईप की आवश्यकता है परंतु इस आकार का पाईप उपलब्ध के कारण, छोटे आकार के दो पाईप समानान्तर प्रयोग किया जाना प्रस्तावित किया जाता है। छोटे पाईप का	
available therefore, two smaller size available pipes are proposed to be used in pa What would be the size of smaller pipes in terms of size of bigger pipe 'D'? एक शहर में जल वितरण के लिए 'D' व्यास के पाईप की आवश्यकता है परंतु इस आकार का पाईप उपलब्ध के कारण, छोटे आकार के दो पाईप समानान्तर प्रयोग किया जाना प्रस्तावित किया जाता है। छोटे पाईप का	
available therefore, two smaller size available pipes are proposed to be used in pa What would be the size of smaller pipes in terms of size of bigger pipe 'D'? एक शहर में जल वितरण के लिए 'D' व्यास के पाईप की आवश्यकता है परंतु इस आकार का पाईप उपलब्ध के कारण, छोटे आकार के दो पाईप समानान्तर प्रयोग किया जाना प्रस्तावित किया जाता है। छोटे पाईप का	
available therefore, two smaller size available pipes are proposed to be used in pa What would be the size of smaller pipes in terms of size of bigger pipe 'D'? एक शहर में जल वितरण के लिए 'D' व्यास के पाईप की आवश्यकता है परंतु इस आकार का पाईप उपलब्ध के कारण, छोटे आकार के दो पाईप समानान्तर प्रयोग किया जाना प्रस्तावित किया जाता है। छोटे पाईप का	
available therefore, two smaller size available pipes are proposed to be used in pa What would be the size of smaller pipes in terms of size of bigger pipe 'D'? एक शहर में जल वितरण के लिए 'D' व्यास के पाईप की आवश्यकता है परंतु इस आकार का पाईप उपलब्ध के कारण, छोटे आकार के दो पाईप समानान्तर प्रयोग किया जाना प्रस्तावित किया जाता है। छोटे पाईप का	
available therefore, two smaller size available pipes are proposed to be used in pa What would be the size of smaller pipes in terms of size of bigger pipe 'D'? एक शहर में जल वितरण के लिए 'D' व्यास के पाईप की आवश्यकता है परंतु इस आकार का पाईप उपलब्ध के कारण, छोटे आकार के दो पाईप समानान्तर प्रयोग किया जाना प्रस्तावित किया जाता है। छोटे पाईप का	
available therefore, two smaller size available pipes are proposed to be used in pa What would be the size of smaller pipes in terms of size of bigger pipe 'D'? एक शहर में जल वितरण के लिए 'D' व्यास के पाईप की आवश्यकता है परंतु इस आकार का पाईप उपलब्ध के कारण, छोटे आकार के दो पाईप समानान्तर प्रयोग किया जाना प्रस्तावित किया जाता है। छोटे पाईप का	
available therefore, two smaller size available pipes are proposed to be used in pa What would be the size of smaller pipes in terms of size of bigger pipe 'D'? एक शहर में जल वितरण के लिए 'D' व्यास के पाईप की आवश्यकता है परंतु इस आकार का पाईप उपलब्ध के कारण, छोटे आकार के दो पाईप समानान्तर प्रयोग किया जाना प्रस्तावित किया जाता है। छोटे पाईप का	_
available therefore, two smaller size available pipes are proposed to be used in pa What would be the size of smaller pipes in terms of size of bigger pipe 'D'? एक शहर में जल वितरण के लिए 'D' व्यास के पाईप की आवश्यकता है परंतु इस आकार का पाईप उपलब्ध के कारण, छोटे आकार के दो पाईप समानान्तर प्रयोग किया जाना प्रस्तावित किया जाता है। छोटे पाईप का	
नक् महन नः जानगर D पर सम्भ प्रया हाना !	आकार
	
	<u>_</u>
	-
	

					*
<u>-</u>		 -			
			·	·	
		·			
		<u> </u>	. -		
		•			
	·········				
•					
	 -				
		·			
<u></u>					
	<u> </u>				~
 · ·					
				·	
					<u> </u>
		· · · · · · · · · · · · · · · · · · ·			
·	<u> </u>				
<u>~</u>		.	<u> </u>		
			-		
			<u> </u>		
	,. -	·			
					
					

_			
	· · · · · · · · · · · · · · · · · · ·		-
	-		
			
			
			
	·	······································	
		1	
			
		·	
35.	Also indicate point of applic चित्र में दिखाये गए आँकड़ों के आध् कार्यकारी बिन्दु भी बताइये ।	ार पर पुश्ता दीवार पर कुल सिक्रय मृदा $\phi = 36^{\circ} \ \gamma = 18 \ \text{kN/m}^{3}$	
		 	
	5 :	· ·	
	 4 :	$\phi = 32^{\circ} \gamma = 16 \text{ kN/m}^3$	
	_	Ł١	
	$\sin 36^{\circ} = 0.587$	$\sin 34^\circ = 0.559 \qquad \qquad \sin$	32° = 0.53

	<u> </u>	
<u></u>		
<u>- </u>		
		<u> </u>
		
		-
<u></u>		
		<u> </u>
		
		
		
·		
		<u> </u>
		<u></u>

36.	There is a sand layer up to 5 m below ground surface and then there is clay layer of 3 m thick. If unit wt of sand is 2 t/m^3 and clay is 1.8 t/m^3 and the clay layer is subjected to an additional pressure of 3 t/m^2 at it middle point, calculate settlement of clay layer. If water table rises to ground surface, what be effect on settlement? ($m_v = 3.5 \text{ m}^2/\text{t}$ for $10 - 13 \text{ t/m}^2$ and $m_v = 4.8 \text{ m}^2/\text{t}$ for $5 - 8.5 \text{ t/m}^2$) $\frac{1}{2} + \frac{1}{2} +$				
	$(m_v 4.8 \text{ m}^2/\text{t for } 5 - 8.5 \text{ t/m}^2)$				
.					

23 P.T.O.

		<u> </u>
	•	
		-
27	White the stans for decigning a PCC column	
37.		
	प्रबलित सीमेन्ट कंक्रीट के स्तंभ के अभिकल्पन के विभिन्न पदों को लिखिए ।	
	•	
		.,
		
,		
		<u> </u>
	•	
	-	

					
				·	·
		·	·	<u> </u>	
				<u> </u>	*
	- 	·	···		
······································	·		·		
 -					•
<u></u>		·	 -		
					
				· -	
		·		- ,	<u> </u>
•					
	<u> </u>				
•					
			·	<u> </u>	
<u></u>					
•					
,					
		· .			
			·		

38. Compute the forces in the elements of frame shown in fig. चित्र में दिखाये गये फ्रेम के विभिन्न अवयवों में बलों का आकलन कीजिए ।

39. Compare the ratio of the strength of a solid column to that of a hollow column of same cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक द्येस एवं खोखले रतंभ के सामध्ये की तुलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है लाथ खोखले स्तंभ में आंतरिक व्यास, बाह्य व्यास का 3/5 है । दौनों स्तंभों की लंबाई समान है तथा रोनों स्तंभ सिरों पर हिंग्ड हैं ।					
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में					
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में			<u>. </u>		
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में				·	
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में					
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में					·
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में					
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में				<u>-</u>	
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में		<u></u>			
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में					
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में			,,	<u>- u- </u>	
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में			4.4		
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में		<u></u> .	.		
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में					·
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में					
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में			<u></u>	<u> </u>	<u>-</u>
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में		<u></u>			
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में					
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में	,				
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में					
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में		<u> </u>			=
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में			· · · · · · · · · · · · · · · · · · ·		
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में					
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में				-	
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में		<u> </u>	<u></u>		
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में			<u> </u>		
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में					
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में		-			
cross-sectional area. The internal dia of hollow column is 3/5 of the external diameter. Both columns have same length and end conditions i.e., hinged at ends. एक होस एवं खोखले स्तंभ के सामर्थ्य की तलना कीजिए यदि दोनों का अनुप्रस्थ काट समान है तथा खोखले स्तंभ में			.,-		
जातारक ज्यास, बाह्य ज्यास यम जाज है । याना रतना यम राजार राजा र राजा	39.	cross-sectional area. The inte Both columns have same len एक ठोस एवं खोखले स्तंभ के सामध्य	ernal dia of hollow co gth and end conditions की तलना कीजिए यदि दोनों	lumn is 3/5 of the e i.e., hinged at ends. का अनुप्रस्थ काट समान है	xternal diameter. इतथा खोखले स्तंभ में
		्रासारमा ज्यारा, भारत ज्यास मार्ग अस	e chin min an ciale m		

· 	
<u> </u>	<u> </u>
· · · · · · · · · · · · · · · · · · ·	
	·
	· · · · · · · · · · · · · · · · · · ·
	·
•	
·	
-	

<u>, , , , , , , , , , , , , , , , , , , </u>	
	

Space For Rough Work / कच्चे काम के लिए जगह