Serial No.

STATISTICS-II

0021

Time Allowed : Three Hours

Maximum Marks : 200

C-HLR-K-TB

IES / ISS EXAM, 2010

INSTRUCTIONS

Candidates should attempt FIVE questions in ALL including Questions No. 1 and 5 which are compulsory. The remaining THREE questions should be answered by choosing at least ONE question each from Section A and Section B.

The number of marks carried by each question is indicated against each.

Answers must be written only in **ENGLISH**.

(Symbols and abbreviations are as usual.)

Any essential data assumed by candidates for answering questions must be clearly stated.

SECTION—A

- 1. Attempt any 5 parts of the following :---
 - (a) Samples of sizes n_1 and n_2 are drawn from two population having means μ_1 and μ_2 respectively with a common variance σ^2 . Find the BLUE of $l_1\mu_1 + l_2\mu_2$ and obtain its variance. 8
 - (b) State and prove Gauss-Markoff theorem stating all basic assumptions and model requirements.
 - (c) Consider four independent random variables with $E(y_1) = E(y_2) = \theta_1 + \theta_2$; $E(y_3) = E(y_4) = \theta_1 + \theta_3$; $V(y_i) = \sigma^2$, i = 1, 2, 3, 4.

Determine the condition for estimability of a linear

parametric function $\ell' \theta = \sum_{i=1}^{4} \ell_i \theta_i$. Also obtain a

solution of the normal equations and the sum of squares due to error.

(d) If X₁, X₂,, X_n are iid from N(0, 1). Investigate the behaviour of the following estimators in terms of unbiasedness, consistency, efficiency and sufficiency :

(i)
$$T_1 = \frac{X_1 + 2X_2}{3}$$
, (ii) $T_2 = \frac{\sum_{i=1}^{n} X_i}{n}$,

(iii)
$$T_3 = \frac{\sum_{i=1}^{n} X_i}{n+1}$$
. 8
(2) (Contd.)

(e) If

$$f(x / \theta) = \exp\left[\frac{1}{x} \{\theta A'(\theta) - A(\theta)\} - A'(\theta) + S(x)\right]$$

is a distribution indexed by parameter θ , then obtain the Maximum likelihood estimator of θ . 8

- (f) Discuss the following estimation procedures :
 - (i) Pivotal method of constructing confidence interval.
 - (ii) Bootstrap method of finding revised estimates.
- 2. (a) Let X₁, X₂, X₃ be three uncorrelated random variables having common variance σ². If E(X₁) = θ₁ + θ₂, E(X₂) = 2θ₁ + θ₂, E(X₃) = θ₁ + 2θ₂. Show that the least squares estimates θ₁, θ₂ satisfy the equations :

$$6\hat{\theta}_1 + 5\hat{\theta}_2 = x_1 + 2x_2 + x_3$$

$$5\hat{\theta}_1 + 6\hat{\theta}_2 = x_1 + x_2 + 2x_3$$

Obtain :

- (i) $V(\hat{\theta}_1), V(\hat{\theta}_2)$ and $Cov(\hat{\theta}_1, \hat{\theta}_2)$
- (ii) the Error sum of squares. 10
- (b) Let X₁, X₂,, X_n denote a random sample from a population with mean μ and variance σ²(<∞).</p>

(Contd.)

Find the BLUE of μ . Using appropriate examples show that this estimator may attain Cramer-Rao lower bound for some distribution, while for some other distribution, there exists an unbiased estimator which is better than the BLUE. 10

- (c) State and prove factorization theorem for sufficiency. Hence or otherwise investigate the sufficiency of the estimator, $T = \frac{1}{6}(X_1 + 2X_2 + 3X_3)$ for θ in Bernoulli distribution. 10
- (d) Give the statement of Bhattacharya bounds. Investigate the existence of Bhattacharya bound for θ if :

 $f(x; \theta) = \theta(1 - \theta)^{x}, x = 0, 1, 2, \dots$

Further verify whether there exists any MVB estimator or not ? Compare the estimates. 10

- 3. (a) For a model $E(y) = A\theta$, $D(y) = \sigma^2 I$, describe the estimation space and error space and find the least squares estimator for θ . Show that the columns of A and Y-A $\hat{\theta}$ are orthogonal. 10
 - (b) Define a one-way analysis of variance model, stating all its assumptions. Prepare the complete ANOVA table with the corresponding Expected SS for error and total.

(Contd.)

- (c) Let $(X_1, X_2, ..., X_m)$ and $(Y_1, Y_2, ..., Y_n)$ be two independent samples from $N(\mu_1, \sigma^2)$, $N(\mu_2, \sigma^2)$ respectively where μ_1, μ_2 and σ^2 are all unknown. Obtain a 100(1 - α)% confidence interval for $\mu_1 - \mu_2$.
- (d) Show that a consistent solution of a likelihood equation is asymptotically normal under certain conditions to be stated. 10
- 4. (a) Let y_i , i = 1, 2, ..., n be independent random variables with $E(y_i) = \alpha + \beta x_i$; $V(y_i) = \sigma^2$, where $x_1, x_2, ..., x_n$ are given. Obtain the estimators of α , β and the variances of the estimators. 10
 - (b) Let (X₁, X₂,, X_n) be a random sample from N(μ, σ²), σ² is unknown. Use pivotal method to find a 100(1 - α)% confidence interval for μ.
 10
 - (c) Distinguish between Uniformly minimum variance unbiased (UMVU) and Minimum variance bound (MVB) estimator. Show that UMVU estimator is always unique, if it exists.

(Contd.)

ļ

- (d) If \overline{X}_{I} is the mean of a random sample of size n from N(μ , σ_{1}^{2}) and \overline{X}_{2} is the mean of another random sample of size n from N(μ , σ_{2}^{2}), and the two samples are independent then show that :
 - (i) $p\overline{X}_1 + (1-p)\overline{X}_2, 0 \le p \le 1$ is unbiased for μ , and
 - (ii) the variance of the estimator is minimum

when
$$p = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$
. 10

SECTION-B

- 5. Attempt any 5 :---
 - (a) Distinguish between :
 - (i) Simple and composite hypothesis
 - (ii) Randomized and non-randomized tests
 - (iii) Null and alternative hypothesis
 - (iv) Prior and posterior distribution. 8
 - (b) Given a random sample from N(μ , 1), propose a test for H₀ : μ = 10 against H₁ : μ = 11. Obtain the critical region of the test and power of the test.
 - (c) Discuss the steps involved in setting the control limits for R-charts when the population range R is unknown.

8

- (d) Obtain the moment generating function of a multivariate normal distribution $N_{p}(\mu, \Sigma)$. 8
- (e) If X ~ Poisson (λ) and if λ assumes a prior distribution gamma (α, β), obtain a Bayes estimate for λ.
- (f) Explain sequential probability ratio test procedure. Obtain OC and ASN functions for testing $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$, if X follows a Bernoulli distribution with parameter θ . 8

6. (a) Define :

- (i) Exponential family of distributions
- (ii) Uniformly most powerful test
- (iii) Unbiased test
- (iv) Similar test.

10

(b) If two samples of size n₁ and n₂ are drawn from two normal populations with different variances, develop a test for :

 $H_0: \sigma_1^2 = \sigma_2^2 \text{ versus } H_1: \sigma_1^2 \neq \sigma_2^2. \qquad 10$

(c) Find the distribution of sample correlation coefficients r_{ij}'s (i < j = 1, 2 ρ) when the corresponding population correlation coefficients, ρ_{ij} ≠ 0 (i ≠ j = 1, 2 ρ) in sampling from a p-variate normal distribution.

(Contd.)

- (d) Distinguish between LTPD and AOQL. Design sampling plan for inspecting large batches (N large) which has a 95% chance of accepting batches with 0.5% defective and a 5% chance of accepting batches with 5% defective.
- 7. (a) A coin is tossed for which probability θ of getting

head is either $\frac{1}{3}$ or $\frac{2}{3}$. We are asked to decide which value of θ is true. The coin is tossed once and the loss function is $L(\theta, d)^2 = (\theta - d)^2$. Find :

- (i) All possible decision rules
- (ii) Risk for all decision rules
- (iii) Minimax decision rules. 10
- (b) Define Mahalanobis D²-Statistic. Establish a suitable relationship with T²-Statistics. Hence or otherwise obtain the null distribution of D²-Statistics. 10

(c) If
$$X \sim N_p(\mu_1, \Sigma)$$
 and $X = \begin{pmatrix} X^{(1)} \\ X^{(2)} \end{pmatrix}$, where

$$\mathbf{X}^{(1)} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_q \end{pmatrix} * \text{and } \mathbf{X}^{(2)} = \begin{pmatrix} \mathbf{x}_{q+1} \\ \vdots \\ \mathbf{x}_p \end{pmatrix}.$$

Obtain $E[X^{(1)} | X^{(2)}]$. 10

(Contd.)

ď

(d)

ì

Let X be a single observation from a probability function p(x) which is positive as the nonnegative integers and zero elsewhere. For testing

 $H_0: p(x) = \frac{e^{-1}}{x!}$ versus $H_1: p(x) = \frac{1}{2^{x+1}}$, obtain the critical region and show that the test is unbiased. 10

- 8. (a) Let $X_{(1)} < X_{(n)}$ be the extreme Statistics in a random sample of size n from a rectangular distribution over $(\theta, \theta + 1)$. To test $H_0: \theta = 0$ against $H_1: \theta > 0$, the test is rejected iff $X_{(1)} > 1$ or $X_{(n)} > c$, where c is a constant. Determine c so that the test has size α and show that the test is unbiased. 10
 - (b) Show that SPRT terminates with probability one.
 - (c) Large batches of screws are subject to a single sampling plan with n = 60, c = 2. If the process average P = 0 01, does this lot accept batches of high quality (p ≤ p̄) with high probability ? If the proportion of defectives in a batch is 0.05, what is the chance of accepting the batch ? 10
 - (d) Define a Wishart distribution. State and prove its reproductive property.
 10

•

,

,

.

.