2005 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY III B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS AERO SPACE STRUCTURES -I (AERONAUTCAL ENGINEERING)	
Answer any FIVE Questions All Questions carry equal marks	
1. Determine the diameter 'd' of a circular shaft subjected to a bending according to	g moment M and a torque T,
(a) Octahedral shear stress theory, and	
(b) Maximum energy theory.	[8+8]
2. (a) A cantilever member 0.1 m long having cross-section of 0.05 m × 27.5 kN, what is the maximum shear stress and where does it occur?	0.25 m supports a load of [6]
 (b) Define the following i. Dynamic load ii. Static load iii. Live load iv. Impact load and 	
v. Inertia load	[10]
3. (a) Describe the term Factor of Safety and its use in engineering des	ign.
(b) Explain the effect of fluctuating stresses on the life of a component. towards ensuring safety against these stresses?	What steps are essential [8+8]
4. (a) What are relative merits of Rivetted joints/bolted joints over each examples.	n other. Explain with live
(b) Write a note on 'Stress concentration'.	[8+8]
5. Obtain the differential equation of the deflection curve of a beam loa Hence determine the deflection at every point of a cantilever subject to at the free end.	nded by lateral forces. single concentrated load P, [16]
6. A simply supported beam with overhang is loaded as shown in figur deflection of point C using Castigliano's theorem.	e 1 Find the vertical [16]
7. Consider a beam as shown below in figure: 2 The second moment of 106 mm 4. If L=6m, ad a=3m, determine	f area of the this beam 40 \times
(a) Reactions and maximum bending stresses in the beam (b) Deflection at the point of application of 20kN load on the beam.	[8+8]
8. A catilever beam of stepwise constant crosssection, as shown in fug concentrated load at its tip. Determine the deflection at pt. P, making theorem.	ure 3 below is loaded with a use of Castigliano's [16]