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I too will something make
And joy in the making;
Altho’ tomorrow it seem
Like the empty words of a dream
Remembered on waking.

Robert Bridges, Shorter poems.



In loving memory of
Elizabeth Baron and John Baron
(Auntie Lizzie and Uncle Jack)

and those Woodside Bank summers
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Preface

This book is based on lectures given at the Victoria University of Manch-
ester to first year Honours Mathematics students including those taking
joint or combined degrees. In common with most other British mathe-
matics departments, the Manchester mathematics department has thor-
oughly reviewed its curriculum in recent years in the attempt to meet
more adequately the needs of students who have experienced the ef-
fects of the great changes in the teaching of mathematics in schools, as
well as the increased numbers of ‘mature students’ and students from
non-standard backgrounds.

It was clear to us at the University of Manchester that we should com-
pletely rethink and broaden our curriculum, including material which
we had previously expected students to know on entry to the course but
also including introductory material on combinatorics, computer skills
and numerical mathematics, as well as encouraging the development of
problem solving skills.

A key ingredient of this new University of Manchester curriculum is
a module on Mathematical Reasoning whose purpose is to introduce
the basic ideas of mathematical proof and to develop skills in writing
mathematics, helping to bridge the gap between school and university
mathematics. This book is based on this course module. The ability to
write correct and clear mathematics is a skill which has to be acquired by
observing experienced practitioners at work in lectures and tutorials, by
learning to appreciate the details of mathematical exposition in books,
and by a great deal of practice. It is a skill readily transferable to many
other areas and its acquisition is likely to be one of the main benefits of
a mathematics degree course for most students who may well make no
further use of most of the specific mathematical content of the course!

There is no absolutely correct way of writing out a given proof. For

ix
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example, it is necessary to take into account who the intended reader is.
But, whoever the reader is, the proof should be expressed as clearly as
possible and to achieve this the writer needs to understand the logic of
the proof. Writing a proof is not separate from discovering the proof in
the way that writing up a scientific experiment is separate from carry-
ing out the experiment or performing a piece of music is separate from
composing it. Attempts to write out a proof are an important part of
the discovery process. Alison Leonard has written in a totally different
context:

Not only are human ideas conveyed by language, they are actually formed by
the language available to us.}

So it is in mathematics, where we find a parallel development of math-
ematical ideas and mathematical language.

This is reflected in this book. The emphasis is on helping the reader to
understand and construct proofs and to learn to write clear and concise
mathematics. This can only be achieved by exploring some particular
mathematical topics and the contexts chosen are set theory, combina-
torics and number theory. These topics

e provide good examples to illustrate a range of basic methods of proof,
in particular proof by induction and proof by contradiction,

o include some fundamental ideas which are part of the standard tool
kit of any mathematician, such as functions and inverses, the bino-
mial theorem, the Euclidean algorithm, the pigeonhole principle, the
fundamental theorem of arithmetic, and congruence,

o build on ideas met in early schooling illustrating ways in which famil-
iar ideas can be formulated rigorously, for example counting or the
greatest common divisor,

e include some of the all time great classic proofs, for example the Eu-
clidean proofs of the irrationality of root 2 and the infinity of primes,
but also ideas from throughout mathematical history so that there is
an opportunity to present mathematics as a continually developing
subject.

Roughly speaking, the first three parts of the book are about the
basic language of mathematics and the final three parts are about num-
ber theory, illustrating how the ideas of the earlier parts are applied to
some significant mathematics. The reader may find that the later parts

1 See Alison Leonard, Telling our stories: wrestling with a fresh language for the
spiritual journey, Dorton, Longman and Todd, 1995.
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contain some more straightforward material than the early parts sim-
ply because there is material on problem solving techniques which can
then be practised on specific numerical examples. The topics selected
for these later parts, the Euclidean algorithm, modular arithmetic and
prime numbers, include material from the whole of mathematical history
from classical Greek times to the present day.

I would encourage the reader in working through the first three parts
not to expect to understand everything at first. Part I introduces various
forms of mathematical statements and the standard methods of proof.
Proof by contradiction and proof by induction are explained in detail and
these methods are then used again and again throughout the remainder
of the book: so many great theorems are proved by contradiction and
some are included in this book. Part II covers the basic material on
sets and functions which provides the language in which much mathe-
matics is best expressed. It includes a leisurely discussion of universal
and existential statements which are so important in university mathe-
matics, particularly analysis or advanced calculus. This is not a book
on mathematical logic but inevitably some ideas from the beginnings of
that subject are included in these first two parts. The reader may find
some of the material on counting in Part III to be more difficult than
the rest of the book. It is best not to become discouraged by this but
if necessary to move on to Part IV which is probably the easiest part
but also includes some very striking and attractive results, returning to
Part III when more familiarity with the language of sets and functions
has been acquired. This material on counting provides good practice
in using the language of sets and functions in a very familiar context
and also illustrates how a familiar process may be made mathematically
precise and how this then enables the process to be extended to a less
familiar context, counting infinite sets.

The book is divided into twenty four chapters and grew out of a series
of twenty four lectures. However, there is far more material in most
chapters than could reasonably be covered in a single lecture. A lecture
course based on this book would need to be selective covering either a
subset of the chapters or, more likely, a subset of the material in most
or all of the chapters as the author’s lecture courses have done.

There is a great range of ability, experience and knowledge amongst
students embarking on university mathematics courses and a real at-
tempt has been made here to provide material meeting the needs of
weaker or ill-prepared students whilst at the same time providing some-
thing which will interest and challenge the most able students. This is
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achieved by including material and, in particular, problems of varying
difficulty; many of the over 250 problems are routine and computational
but others are quite demanding. In the later stages of the book some
significant developments of the ideas in the book are approached in the
problems.

Each chapter concludes with a number of exercises many of which
are very closely related to material in the chapter and intended to be
relatively straightforward and routine. Occasionally something a little
harder is included. The reader is encouraged to work through all of these
and full solutions for them are given at the back of the book. There
are also six sets of problems, some similar to the exercises in order to
consolidate the techniques involved but others more wide ranging and
challenging. I hope that every reader will find some of the exercises and
problems to be fun.

Mathematicians are not good at encouraging students to read around
the subject but the intention here is that material in this book not
covered in a lecture course will provide additional reading particularly
for stronger students and, through the references given, lead to wider
study in some areas. I have tried to write the book which I would have
welcomed for my own students.

Finally, I am only too conscious that anyone who writes a book about
how to write mathematics well lays themselves open to ridicule when
the proofs in the book are found to be confused or inadequate. If the
reader does find failings in the proofs in this book then I hope that
acquiring the ability to see these failings will be seen as a useful step in
developing that self-criticism which is necessary for the writing of clear
and beautiful mathematics.

Acknowledgements. The author is indebted to very many people who have
knowingly or unknowingly influenced the material in this book or who have provided
specific advice. I would in particular like to acknowledge the contributions of the
following: Pyotr Akhmet’ev, Michael Barratt, Francis Coghlan, Mark Eccles, Michael
Eccles, Pamela Eccles, Douglas Gregory, Brian Hartley, Martin Huxley, John King-
Hele, E. Makin, Mick McCrudden, Jeff Paris, Mike Prest, Nigel Ray, John Reade,
Andrés Sziics, Grant Walker, George Wilmers, J.R. Winn and Reg Wood. In addition
I wish to thank the staff of Cambridge University Press for their careful editorial
work and an anonymous referee whose report on a preliminary version was extremely
helpful.

Peter J. Eccles, Manchester, June 1997.
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The language of mathematics

Pure mathematics is concerned with the exploration of mathematical
concepts arising initially from the study of space and number. In order
to capture and communicate mathematical ideas we must make state-
ments about mathematical objects and much mathematical activity can
be described as the formulation of mathematical statements and then
the determination of whether or not such statements are true or false.
It is important to be clear about what constitutes a mathematical state-
ment and this is considered in this first chapter. We begin with simple
statements and then examine ways of building up more complicated
statements.

1.1 Mathematical statements

It is quite difficult to give a precise formulation of what a mathematical
statement is and this will not be attempted in this book. The aim here is
to enable the reader to recognize simple mathematical statements. First
of all let us consider the idea of a proposition. A good working criterion
is that a proposition is a sentence which is either true or false (but not
both). For the moment we are not so concerned about whether or not
propositions are in fact true. Consider the following list.

iy 1+1=2.
(ii) »=3.
(iii) 12 may be written as the sum of two prime numbers.
(iv) Every even integer greater than 2 may be written as the sum of
two prime numbers.
(v) The square of every even integer is even.
(vi) n is a prime number.
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(vii) n? —2n > 0.
(vili) m < n.
(ix) 12— 11.

(x) 7 is a special number.

Of these the first five are propositions. This says nothing about
whether or not they are true. In fact (i) is true and (ii) is false. Propo-
sition (iii) is true since 12 = 7+ 5 and 5 and 7 are prime numbers.}
Propositions (iv) and (v) are general statements which cannot be proved
by this sort of simple arithmetic. In fact it is easy to give a general proof
of (v) (see Exercise 3.3) showing that it is true. However, at the time
of writing, it is unknown whether (iv) is true or false; this statement is
called the Goldbach conjecture after Christian Goldbach who suggested
that it might be true in a letter to Leonhard Euler written in 1742.

On the other hand the others on the above list are not propositions.
The next two, (vi) and (vii), become propositions once a numerical value
is assigned to n. For example if n = 2 then (vi) is true and (vii) is false,
whereas if n = 3 then they are both true. The next, (viii), becomes a
proposition when values are assigned to both m and n, for example it
is true for m = 2, n = 3 =nd false for m = 3, n = 2. Sentences of this
type are called predicates. The symbols which need to be given values
in order to obtain a proposition are called free variables.

The word statement will be used to denote either a proposition or
a predicate. So in the above list the first eight items are statements.
We will use a single capital letter P or @ to indicate a statement, or
sometimes an expression like P(m,n) to indicate a predicate, with the
free variables listed in brackets.

The last two entries in the above list are not statements: (ix) is not
even a sentence and (x) doesn’t mean anything until we know what
‘special’ means. Very often mathematicians do give technical meanings
to everyday words (as in ‘prime’ number used in (iii) and (iv) above
and ‘even’ number used in (v)) and so if ‘special’ had been given such
a meaning as a possible property of a number then (x) would be a
proposition and so a statement. Of course the fact that (i) to (viii) are
statements relies on a number of assumptions about the meanings of the
symbols and words which have been taken for granted.

t A positive integer is a prime number if it is greater than 1 and is divisible only
by 1 and itself. Thus the first few prime numbers are 2, 3, 5, 7, 11, .... This
definition is discussed in Chapter 23.
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In particular it is quite complicated to give a precise definition of
the number 7 in statement (ii). The number 7 was originally defined
geometrically as the ratio between the length of the circumference of
a circle and the length of the diameter of the circle. In order for this
definition to be justified it is necessary to define the length of the cir-
cumference, a curved line, and having done that to prove that the ratio
is independent of the size of the circle. This was achieved by the Greeks
in classical times. A regular hexagon inscribed in a circle of unit di-
ameter has circumference 3 and so it is clear that # > 3.1 Archimedes
showed by geometrical means in his book On the measurement of the
circle that 3% <m < 3% and also provided a beautiful proof of the
formula 72 for the area of a circle of radius . The modern definition
of 7 is usually as twice the least positive number for which the cosine
function vanishes, and the details may be found in any text on analysis
or advanced calculus.}

1.2 Logical connectives

In mathematics we are often faced with deciding whether some given
proposition is true or whether it is false. Many statements are really
quite complicated and are built up out of simpler statements using var-
ious ‘logical connectives’. For the moment we restrict ourselves to the
simplest of these: ‘or’, ‘and’ and ‘not’. The truth or falsehood of a
complicated statement is determined by the truth or falsehood of its
component statements. It is important to be clear how this is done.

The connective ‘or’

Suppose that we say
For integers a and b, ab=0ifa=0o0r b= 0.

The statement ‘a = 0 or b = 0’ is true if a = 0 (regardless of the value
of b) and is also true if b = 0 (regardless of the value of a). Notice that
the statement is true if both a = 0 and b = O are true. This is called

t Some fundamentalist Christians have claimed that 1 Kings vii 23, in which a round
object of diameter 10 cubits is stated to have a circumference of 30 cubits, ‘proves’
that # = 3 but mathematical truth can never be a matter simply of faith (nor
can religious truth either in the author’s experience) and in any case there is no
suggestion in the biblical passage that the measurements were highly accurate!

1 See for example R. Haggerty, Fundamentals of mathematical analysis, Addison-
Wesley, Second edition 1993.
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the ‘inclusive’ use of ‘or’. Its meaning is best made precise by means of
a truth table. Any statement may be either true or false: we say that
‘true’ and ‘false’ are the two possible truth values for the statement. So
given two statements P and @ each has two possible truth values giving
four possible combinations in all. The truth table for ‘or’ which follows
specifies the truth value for ‘P or )’ corresponding to each possible
combination of truth values for P and for @, one line for each. In the
table T indicates ‘true’ and F indicates ‘false’.

Table 1.2.1
P Q@ l PorQ
T T T
T F T
F T T
F F F

In this table, the truth values in the second line for example indicate
that if P is true and @ is false then the statement ‘P or @’ is true.

‘P or @ is called the disjunction of the two statements P and Q.

In everyday speech ‘or’ is often used in the exclusive sense as in the
first sentence of this section: ‘we are faced with deciding whether some
given proposition is true or whether it is false’, in which it is implicitly
understood (and emphasized by the uses of the word ‘whether’) that it
is not possible for a proposition to be both true and false.

To give another everyday example of the ‘exclusive or’, when we say
‘everyone will travel there by bus or by train’ this would normally be
taken to mean that everyone uses one or other form of transport but not
both. If we wanted to allow for someone using both we would probably
say ‘everyone will travel there by bus or by train or by both’. In practice
the precise meaning of ‘or’ is made clear by the context or there is some
ambiguity {(but not both!). The meaning of mathematical statements
must be precise and so we avoid these ambiguities by always using ‘or’
in the inclusive way determined by the above truth table.

The connective ‘or’ is sometimes hidden in other notation. For ex-
ample when we write ‘a < b’ where a and b are real numbers this is a
shorthand for ‘a < b or @ = b’. Thus both the statements ‘1 < 2’ and
‘2 < 2’ are true.

Similarly ‘a = £¥’ is a shorthand for ‘a = b or a = —b’. There is some
possibility of confusion here for the true statement that 1 = +1 does not
mean that 1 and +1 are interchangeable: ‘if 22 = 1 then z = +1’is a
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true statement whereas ‘if 22 = 1 then £ = 1’ is a false statement! It is
necessary to be clear that ¢ = +b is not asserting that a single equality
is true but is asserting that one (or both) of two equalities a = b, a = —b
is true. The following truth table illustrating this may help.

a b |a=b a=-—b|a=:tb
1 2 F F F
1 1 T F T
2 -2 F T T
0 0 T T T

Observe how the truth values in the final column may be read off from
the truth values in the previous two columns using the truth table for
‘or’ (Table 1.2.1).

In fact the statement @ = +b can be written as a single equation,
namely |a| = |b] where |a| denotes the absolute value of a (ie. |a| =
aifa>0and|a|]=—aifa<0).

The connective ‘and’

‘We use this when we wish to assert that two things are both true. Again
this word can be hidden in other words or notation. Thus if we assert
that

7 lies between 3 and 4
or in symbols
I<nr<4

then this means that
m>3and T < 4

which is called the conjunction of the two statements ‘r > 3’ and ‘r < 4.
You should construct a truth table for ‘and’.

The connective ‘not’

Finally we have the idea of the negation of a statement. The negation
of a statement is true when the original statement is false and it is false
when the original statement is true. This is described by the following
truth table.
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Table 1.2.2
Pinot P
T F
F T

The negation of a statement is usually obtained by including the word
‘not’ in the statement but does require a little care since this is often
used very loosely in everyday speach.

Example 1.2.3 Consider the following statement about a polynomial

f(z) with real coefficients, such as z? + 3 or 23 — 22 — z.

(i) For real numbers q, if f(a) = 0 then a is positive (i.e. a > 0).

What is the negation of this statement? The following possibilities spring
to mind from the everyday use of ‘negation’.

(ii) For real numbers a, if f(a) = 0 then a is negative.

(iii) For real numbers a, if f(a) = 0 then a is non-positive.

(iv) For real numbers a, if f(a) # 0 then a is positive.

(v) For real numbers a, if @ is positive then f(a) = 0.

(vi) For real numbers a, if a is positive then f(a) # 0.
(vii) For real numbers a, if a is non-positive then f(a) # 0.
(viii) For some non-positive real number a, f(a) = 0.

If you think about it you will see that none but the last is the negation.
For example, if f(z) = 2° —z = z(z + 1)(z — 1) then statement (i)
is certainly false since, for the real number 0, f(0) = 0 but 0 is not
positive. On the other hand so are all the other statements apart from
(viii) which is true since 0 is a non-positive number such that f(0) = 0.
We will consider the negation of statements of this form more formally
in the next chapter.

Exercises

1.1 Construct a truth table for ‘and’ as follows.

Q| P and Q

R B !
R e B
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1.2 Construct truth tables for the statements

(i) not (P and Q);

(i) (not P) or (not Q);
(iii) P and (not Q);
(iv) (not P) or Q.

1.3 Using the truth table for ‘or’ complete the following truth table for
the statement o < b.

|a<b a=b|a<b

Bl R I~
i VR

-2

1.4 Consider the following statement.
(i) All girls are good at mathematics.

Which of the following statements is the negation of the above state-
ment?

(i1) All girls are bad at mathematics.
(iii) All girls are not good at mathematics.
(iv) Some girl is bad at mathematics.
(v) Some girl is not good at mathematics.
(vi) All children who are good at mathematics are girls.
(vii) All children who are not good at mathematics are boys.

Can you find any statements in this list which have the same meaning
as the original statement (i)?

1.5 Prove that |a|?> = a2 for every real number a.



2

Implications

In the first chapter we were mainly interested in the meaning of mathe-
matical statements. However, mathematics is primarily concerned with
establishing the truth of statements. This is achieved by giving a proof
of the statement. The key idea in most proofs is that of implication and
this idea is discussed in this chapter.

2.1 Implications

A proof is essentially a sequence of statements starting from statements
we knowt to be true and finishing with the statement to be proved.
Each statement is true because the earlier statements are true. The
justification for such steps usually makes use of the idea of ‘implication’;
an implication is the assertion that if one particular statement is true
then another particular statement is true.

The symbol usually used to denote implication in pure mathematics}
is = although there are a variety of forms of words which convey the
same meaning. For the moment we can think of ‘P = )’ as asserting
that if statement P is true then sq is statement @, which is often read
as ‘P implies . The meaning will be made preciSe by means of a truth
table. Before doing this it is necessary to clarify what this meaning
should be and to do this we consider an example concerning an integer
n.

Suppose that P(n) is the statement ‘n > 3’ and Q(n) is the statement

t See the section on ‘mathematical truth’ at the end of this chapter.

{ In mathematical logic the symbol — is usually used instead of =>. Other symbols
used in mathematical logic are ‘P v Q’ for ‘P or @, ‘P A Q’ for ‘P and Q’, and
‘P’ or ‘~ P’ for ‘not P’.

10



Chapter 2: Implications 11

‘n > 0’, where n is an integer. Then the statement P(n) = Q(n), i.e.
n>3=n>0,

is the assertion that if an integer n is greater than 3 then it is greater
than 0, which is certainly a true statement. Notice that this statement
is true for each integer n even though the statement ‘n > 3’ is true for
some values of n and false for others as is the statement ‘n > (’. Let us
consider the possibilities.

P(n) Q(n)
n<0| F F
n=0| F F
n=1| F T
n=2 F T
n=3| F T
n>3| T T

This table demonstrates that if it is true that n > 3 then it is indeed
true that n > 0. But if n # 3 (i.e. P(n) is false) then we may have n > 0
(so Q(n) is true) for example when n = 2, and we may have n ¥ 0 (so
Q(n) is false) for example when n = —2. However, there is no value of
n for which P(n) is true and Q(n) is false; and this is precisely what
we mean when we say that if P(n) is true then Q(n) is true. We can
summarize this in the following truth table.

Table 2.1.1

P Q|P=Q
T T| T
T F| F
FT| T
F F| T

In an implication P = @, the statement P is called the hypothesis or
antecedent and the statement @) is called the conclusion or consequent.
Here is another illustration. The assertion

n=1=(n-1)(n-2)=0 (for integers n)

is certainly true, for if we substitute n = 1 into (n — 1)(n — 2) we obtain
(1-1)(1-2) =0x(—1) = 0. If we write P(n) for the statement ‘n = 1’
and @(n) for the statement ‘(n — 1)(n — 2) = 0’ we can consider the
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truth or falsehood of these two statements for different values of n as
follows.

| P(n) Q(n)
n=1 T T
n=2 F T

n#1,2| F F

Thus n = 1 illustrates line 1 of Table 2.1.1, n = 2 illustrates line 3, and
n # 1,2 illustrates line 4. Again there is no value of n for which P(n) is
true and Q(n) is false.

It is important to realize that in mathematics we use the idea of
implication in this particularly precise way (as defined by the truth table)
extending everyday usage. Consider the following statements.

(i) (m<4)=(1+1=2)
(i) (m<4)=(1+1=3)
(iii) (r<3)=(1+1=2)
(iv) (m<3)=(1+1=3)

From the truth table it is easily seen that the second of these statements
is false whereas the other three are true (since 3 < 7 < 4). However,
these statements all seem a little odd from an everyday point of view
since the size of the number 7 really has nothing to do with the effect
of adding the number 1 to itself. In everyday speech when we say that
P implies Q this suggests that the statement P causes the statement
@ to be true. The idea of causation is difficult to make precise and so
it is eliminated from the mathematical use of the word ‘implies’. This
difference from everyday usage is clarified in mathematical logic where
a statement of the form P = @ is referred to as a conditional statement
rather than an implication. In this book we have adopted the language
used by most mathematicians.

Another way of motivating our use of implication is to consider its
negative, the statement that P does not imply @, usually written P #
Q. This will be true precisely when P = @) is false and from the truth
table this is when P is true and @ is false. If you think about it these
are precisely the circumstances when we would wish to say that P does
not imply Q. Notice that this means that the statements ‘P % @’ and
‘P and (not Q) are logically equivalent, i.e. have the same meaning (cf.
the truth table for ‘P and (not @)’ in the solution to Exercise 1.2).

Using the fact that ‘(not P) or @’ is the negation of ‘P and (not Q)’
we can say this in a different way: the statements ‘P = @’ and ‘(not
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P) or @ are logically equivalent (again see Exercise 1.2). This logical
equivalence does arise in everyday speech. For example, when we say
‘Read the lecture notes or you won’t understand the lecture’ this has
the same meaning ag ‘If you don’t read the lecture notes then you won’t
understand the lecture.” Here P is the statement ‘you don’t read the
lecture notes’ and @) is the statement ‘you won’t understand the lecture’.

Universal implications

Strictly speaking the statements ‘n > 3 = n > 0 and ‘n = 1 =
(n — 1)(n — 2) = O are predicates and give different propositions for
each value of n.- However, we often use statements of this form in the
way we have been doing to mean that the predicate leads to a true
proposition whatever value is assigned to the free variable n — this is
called a wuniversal statement. The possible range of values for the free
variables may be explained in the text by a phrase like ‘for integers n’
or ‘where n is an integer’, or it may be intended to be clear from the
context; it is usually good practice to make the range of values explicit.

A statément of this type is false if it is not a universal statement, in
other words there is at least one possible value for the variable for which
it fails. Consider the statement ‘z > 0 = x > 1’ for real numbers z. We
can construct a truth table as follows.

Table 2.1.2
>0 z21{z>0=z22>21
z<0 F F T
O<z<1 T F F
rz>21 T T T

Here the entries in the last column are determined by the entries in the
previous two columns using the truth table for implication, Table 2.1.1.
We see from this that there are values of z for which z > 0 and = 2 1,
for example z = 1/2, so that £ > 0 = = > 1 is not universally true.
This means that, for real numbers z, £ > 0 does not imply that = > 1,
which may be written

z>04%z21.

This is an eristence statement: it claims that there is a value of z for
which the hypothesis is true and the conclusion false.
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There will be a fuller discussion of universal statements and existence
statements in Chapter 7.

Notice that in these examples we have adopted the common practice
of using letters in the middle of the alphabet (such as n) to denote
integers and letters at the end of the alphabet (such as z) to denote real
numbers.

If we now reconsider Example 1.2.3 we see that statement (i) there is
the universal implication

fla)=0=a>0 (for real numbers a).

The negation of this is the assertion that the implication is false for
some real number a, in other words f(a) = 0 and a ¥ 0 for some real
number a. This is precisely the statement (viii) which we identified as
the negation.

Reading implications
There are many different ways of reading the statement P = @), which
may also be written @ < P, and some of the most common are listed
below.

(i) If P then Q.
(ii) P implies Q.
(i) Q if P.
(iv) P only if Q.
(v) @ whenever P.
(vi) P is sufficient for Q.
)

(vil) @ is necessary for P.
Take care with the third and fourth of these and also with the last two
for it is important to appreciate the difference between P = @Q and
@ = P. It is quite possible for one of these to hold without the other.
For example, let us return to the examples already considered. We have
seen that, for integers n, n > 3 = n > 0; but n > 0 % n > 3 since,
for example, when n = 1, the hypothesis n > 0 is true whereas the
conclusion n > 3 is false. Similarly, n =1 = (n—1)(n —2) = 0 but
(n=1){n-2)=0% n=1since, whenn =2, (n — 1)(n — 2) =0 but
n# 1.

The statement () = P is called the converse of the statement P = Q.
As an illustration, in Example 1.2.3, statement (v) is the converse of (i)
(and in addition (iv) and (vi) are converse to each other).
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When both implications do hold we write P < Q. Thus we define
P & @ means (P = Q) and (Q = P).

From the truth tables we see that this means that either P and () are
both true or they are both false (see Exercise 2.3).
We read P & @ as follows.

(i) P is equivalent to Q.

(ii) P is necessary and sufficient for Q.
(iii) P if and only if @ (sometimes written P iff Q).
(iv) P precisely when Q.

2.2 Arithmetic

The basic principles of mathematical reasoning apply throughout math-
ematics but in this book we are going to explore them mainly in the
context of number theory or arithmetic since the basic ideas here are
familiar from early schooldays. For the moment it is assumed that the
reader is familiar with the integers, both positive and negative, i.e. the
numbers ..., -2, -1, 0, 1, 2, 3, ..., and their basic arithmetic proper-
ties (under addition and multiplication) and order properties. We will
also make use of the rational numbers (or fractions) and the real num-
bers (or infinite decimals) and these will be discussed in more detail in
Chapter 13.

As we do mathematics new vocabulary may be introduced by means
of a definition. Quite often this gives a precise meaning to an everyday
word. Then when we wish to understand the meaning of a statement
involving that word it is necessary to invoke the definition. Humpty
Dumpty’s principle could well stand at the head of any piece of mathe-
matical writing.

‘When I use a word,” Humpty Dumpty said, in rather a scornful tone, ‘it
means what I choose it to mean - neither more nor less.’

Lewis Carroll, Through the looking glass and what Alice found there.

This reminds us that when we meet a new word, or a familiar word in
a new setting, we need to discover what the writer means by it, not to
decide how we might have defined it!

Here is a familiar idea to illustrate this.
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0Odd and even integers

Definition 2.2.1 Given two integers a and b, we say that|b divides a

or | a is a multiple of b| to mean that there is an integer q such that

a = bq.

Thus for example 3 divides 6 since 6 = 3 x 2, —14 divides 28 since
28 = (—14) x (—2), and b divides 0 whatever the value of the integer b
since 0 = b x 0.

Definition 2.2.2 Given an integer a we say that a is|even| to mean
that 2 divides a.

Definition 2.2.3 Given an integer a we say that a is |odd| to mean

that it is not even.

Notice how the third definition makes use of the second and the second
definition makes use of the first. It is very common to get chains of
definitions; you have to work back through the chain to make use of
them.

Now consider the following statement.

Proposition 2.2.4 101 is an odd integer.

Of course, you know that this is true. But what we are interested in
here is how we might prove it from the arithmetic and order properties
of the integers and our definition of the word ‘odd’. If we cannot prove
it from the definition then our definition isn’t much use.

Incidentally, the word ‘Proposition’ used in this way indicates that I
am claiming that this result is true. It is really a synonym for ‘Theorem’
but that word is usually restricted to results of greater significance than
this one.

Proof From Definition 2.2.3, ‘101 is odd’ means the same as ‘101 is not
even’ which from Definition 2.2.2 means that 2 does not divide 101. By
Definition 2.2.1, this means that there is no integer g such that 2¢q = 101.
Now we clearly cannot prove this by exhausting all the possibilities one
at a time. However, for an integer ¢, either ¢ < 50 or ¢ > 51. Hence
either 2¢ < 100 or 2¢g > 102, so that 2q # 101. Hence 101 is not even
and so is odd as required. O
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The symbol O at the end of this proof is there simply to mark the
completion of the proof. I recommend that proofs are concluded by
stating what has been proved as occurs here.

Notice that the key step in the proof is provided by the two universal
implications

g <50=2¢ <100 (for integers q)

and
g =51 =2¢>102 (for integers q).

This proof might seem over-elaborate, but if you think about it you
will see that it is simply spelling out a simple reason why 101 is an odd
number. You might like to try to find a better proof based simply on
the above definitions.t

2.3 Mathematical truth

It is reasonable to ask how we can get started in establishing the truth
of mathematical statements if the only method of doing this is to prove
them starting from other mathematical statements known to be true.
When the deductive method was first used, for example in the Ei-
ements of Euclid written about 300 B.C., proofs began from certain
‘axioms’ or ‘postulates’ which were viewed as self-evident truths. For ex-
ample, Euclid’s Postulate 1 may be reformulated as ‘Given two distinct
points, there is a unique straight line passing through them’ which most
people would consider to be obvious. This approach sees mathematics
as a body of facts about real objects: points, lines, numbers. These facts
are determined by using certain accepted self-evident rules of deduction
from certain accepted obvious facts, the axioms. There are a number of
philosophical difficulties about this point of view. For one thing mathe-
matical objects appear to be ideal abstract representations of objects in
the real world: for example you can’t see a point and can only see a blob
having some size. For another it has been discovered that different sets
of axioms are possible and give rise to different theories which appear
to be equally valid mathematically. This was first realized in geometry
when in the early nineteenth century ‘non-Euclidean’ geometries were
discovered. We can then ask what is the ‘true’ geometry of the universe.
+ You may feel that the most obvious argument is simply to state that 101/2 = 50%
which is not an integer. This is of course a valid argument but assumes the

properties of the rational numbers. For the present purpose of illustrating the use
of definitions it is appropriate to seek an argument based simply on the integers.
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This is not a mathematical question but is one for physicists and as-
tronomers. However, the awareness that there is more than one possible
geometry was enormously liberating and has given rise to much inter-
esting mathematics as well as physics. Without it the geometry which
provides the language used in general relativity theory would not have
been discovered.

Most mathematicians do appear to take the view that mathematics
deals with real objects. However, in the modern axiomatic approach
axioms are seen not necessarily as ‘self-evident truths’ but simply as
statements which we are assuming to be true. We do mathematics by
exploring what follows from the truth of these axioms using certain
accepted rules of deduction. When we come to apply the mathematics
we must confirm that these axioms are ‘true’ in an appropriate sense in
the area of application or acknowledge that this is an assumption that
we are making. The reader will meet good examples of this axiomatic
method in the study of algebra.

Since this book is primarily concerned with introducing the reader to
mathematical reasoning and exposition it seems best to keep the math-
ematical context very familiar and so we will mainly restrict ourselves
to arithmetic. Most mathematicians probably would consider the basic
properties of numbers to be ‘self-evident truths’. It would be cumber-
some to develop these properties formally from a list of axioms although
this can be done.t. We will simply assume that the reader is familiar with
the basic algebraic properties of numbers (dealing with addition, sub-
traction, multiplication and division) and take these for granted. These
can be summarized as follows.

Properties 2.3.1 Given two real numbers a and b they have a sum
a+ b and a product ab (sometimes denoted by a - b or a x b) which are
also real numbers. The operations of sum (or addition) and product (or
multiplication) of real numbers have the following properties.

(i) Commutativity. a +b = b+ a and ab = ba. (This means that the

1 Formally the real numbers and the rational numbers have the algebraic structure
of a field and the integers have the algebraic structure of an integral domain In
a precise sense the integers are characterized by the statement that they form
an ordered integral domain in which the positive elements satisfy the induction
property (see Axiom 5.1.1). For details of such an axiomatic approach see for
example G. Birkhoff and S. Mac Lane A survey of modern algebra, Macmillan,
Fourth edition 1977. The positive integers can be characterized by a particularly
simple set of axioms, Peano’s axioms, and these will be described in Chapter 9
(see Axioms 9.4.2).
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order in which we write numbers to be added or multiplied doesn’t
matter.)

(ii) Associativity. (a +b) +c=a+ (b+c) and (ab)c = a(bc). (This
means that we can write a+b+c and abc without brackets without
ambiguity.)

(iii) Distributivity. a(b+ ¢) = ab+ ac and (a + b)c = ac + be. (This
tells us how to remove brackets.)

(iv) Zero. a+0=a=0+a.

(v) Unity. axl=a=1xa.

(vi) Subtraction. The equation a + x = 0 has the unique solution
z=—-aandsoa+z=boz=b+(—a)=b—a. (This means
that we can cancel: a4+ 1 = a+ z92 = 1 = z2.)

(vii) Division. If a # 0, then equation ax = b has the unique solution
z=bla= ba~l. (This means that we can cancel: az; = azs =
T1 =123 so longasa #0.)

All the usual algebraic properties of numbers can be deduced from
the above statements. In particular it follows that a x 0 =0=0xa
and we can also deduce the rule of signs (—a)b = —(ab) = a(—b) and
(—a)(—b) = ab (see Problems I, Question 6).

If a and b are rational numbers {fractions) then so are a + b, ab, b—a
and (for a # 0) b/a. The distinction between rational numbers and real
numbers will be considered in Chapter 13. If a and b are integers then
so are a+ b, ab and b — a, but b/a is an integer only if a divides b. Most
of this book will be concerned with the integers.

We will also make use of the order properties of the real numbers
(and have already made use of these in the proof of Proposition 2.2.4);
these may be less familiar and so a formal set of axioms about order
(inequalities) will be given and discussed in the next chapter.

Exercises

2.1 Which of the following universal statements are true and which are
false for integers n?

(i) n=2onlyifn?2-—n-2=0.

(i) n=2ifn? -n-2=0.

(iii) n = 2 is sufficient for n? —n —2=0.

(iv) n = 2 is necessary for n? —n — 2 = 0.

(v) n2-n-2=0=(n=2and n=-1).
(vi) n?-n-2=0=>(n=20rn=-1).



20 Part I: Mathematical statements and proofs

(vii) 2 -n-2=0& (n=2o0rn=-1).
(viii) n2~n—-2=0« (n=2and n=-1).

(ix) (n2-n—-2=0=>n=2)or(n?~n-2=0=>n=-1).
(x) (@*-n-2=0&n=2or(n®-n-2=0«&n=-1)
(xi) (n?2-n-2=0«n=2)and (n?—n-2=0«n=-1).

2.2 By constructing a truth table exhausting the possibilities of n and
using the truth table for ‘implies’, prove that n > 0 => n > 1 for integers
n.

2.3 Complete the following truth table for P < @ using the tables for
‘=’ and ‘and’.
|P=Q Q=P|P&Q

e T Banl !
N O

2.4 By using truth tables prove that, for all statements P and @, the
following statements are true.

(i) P= (PorQ).
(ii) (P and Q) = P.
2.5 By using truth tables prove that, for all statements P and @,
(i) the statements ‘P = @’ and ‘(not Q) = (not P)’ are equivalent,

(ii) the statements ‘P or Q' and ‘(not P) = @’ are equivalent.

2.6 Use the method of proof of Proposition 2.2.4 to prove that 7 does
not divide 100.
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Proofs

A proof of a mathematical statement is a logical argument which es-
tablishes the truth of the statement. The steps of the logical argument
are provided by implications. One of the main aims of this book is to
describe a variety of methods of proof so that you can follow these when
you meet them and also construct proofs for yourself.

No doubt anyone reading this book will have been seeing and under-
standing proofs for years. At university you are expected to be able
to construct your own proofs and, as importantly, to write them out
carefully so that other people can understand them — or even so that
you can understand them yourself when you come to look back at your
work some months later. One real difficulty is that we do not normally
discover proofs in the polished form in which they are presented. It
is important to realize that you will usually spend time constructing
a proof before you then write out a formal proof. You can think of
this as erecting a sort of scaffolding for the purpose of constructing the
proof. When the proof has been constructed the scaffolding is removed
so that the proof can be admired in all its economical beautiful simplic-
ity! However, one difficulty for the person encountering the proof for the
first time is that it can be hard to make sense of. To read and under-
stand the proof we may have to reconstruct the scaffolding for ourselves
from the formal proof. This can be difficult — but not usually as difficult
as thinking of the proof in the first place unless the proof is very badly
written. This is a problem not just for beginning undergraduates but
also for professional mathematicians when they read mathematics.

You may ask why then the scaffolding is not retained. The difficulty
is that if every detail is given then mathematical arguments become
enormously long and cluttered. The aim is to pitch your writing at the
level of the expected reader so that there is just enough information

21
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to enable the reconstruction of the scaffolding if necessary but not so
much that it would mask the essence of the argument. Too much detail
can make a proof based possibly on one simple idea appear enormously
complicated. To avoid detail it is quite common to use statements like
‘it is easy to show that [some statement] is true’ or ‘it now readily follows
that [some statement] is true’ and then the reader has to confirm that
this is indeed the case. It is, however, important not to use such phrases
as a lazy way of avoiding thinking about the details.

It is also the case that excessive pedantic precision can sometimes
make mathematics hard to read. Writing mathematics is not like writing
a computer program; what is written will be read by a human being who
has much common experience with the writer and so is able to anticipate
to some extent what the writer intends. As Gila Hanna has written,

The student of mathematics has to develop a tolerance for ambiguity. Pedantry
can be the enemy of insight.t

Putting this into practice is a matter of fine judgement: ambiguous
statements are only acceptable in contexts which resolve the ambiguity
almost immediately. While learning to write good mathematics it is
probably better to err on the side of pedantry.

In this book arguments will often be presented first with lots of scaf-
folding (as ‘constructing a proof’) and then with the scaffolding removed
(as ‘(formal) proofs’). You should ensure that in each case you do under-
stand why the ‘proof’ does prove the result as claimed. When you read
most mathematics books you need to work with pencil in hand recon-
structing the detail behind the proofs provided. You cannot normally
read a mathematics book like a conventional novel.

3.1 Direct proofs

Let us begin by thinking about one of the simplest forms of mathematical
result. Very many theorems are of the form P = (. How do we set
about proving such a statement? Since the statement is necessarily true
if P is false (remember Table 2.1.1) we only need consider the case when
P is true. Then from the truth table we see that P = @ is true so long
as @ is also true.

So to prove that P = @ is true, it is sufficient to assume that P is
true and deduce Q. This is the direct form of proof. Here is an example.

t In David Tall (editor), Advanced mathematical thinking, Kluwer, 1991.
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Proposition 3.1.1 For positive real numbers a and b, a < b = a2 < b%.

Constructing a proof. We can summarize what is needed in the
following way using a given—goal diagram.j

Given | Goal
a, b positive real numbers la<b=a® <b?

The direct method of proof of an implication is to add the hypothesis
to the given statements and to set a new goal of proving the conclusion.
This leads to the following new given—goal diagram.

Given | Goal
a, b positive real numbers
a<b a? < b®

We now start to think how we can obtain something like the goal from
the given statements. We see that we want a? and b2 in the goal and
this suggests multiplying the given inequality through by a and by b.
Thus

a<b=a®<ab (3.1)

and

a<b=ab<b® (3.2)

using the fact that a and b are both positive. Hence, if we suppose that
a < b, it follows that a? < ab and ab < b?. But now we recognize that
the two inequalities we have obtained both involve ab and that

[(a? < ab) and (ab < b2)] = a? < b (3.3)

so that if a < b then a® < b? as required.

The reader might well ask where the three numbered implications have
come from; why are these true? The answer is that these statements
follow immediately from fundamental properties of>the real numbers
which can be encapsulated in the inequality (or order) axioms. We have
already commented that it would be unwieldy to work from a complete
axiom system in this book and readers are unlikely to have difficulties

+ The idea of using these ‘given—goal diagrams’ comes from the book by Daniel J.
Velleman, How to prove it, a structured approach, Cambridge University Press,
1994. It extends usefully the approach taught to the author at school of starting
by stating clearly what we are ‘required to prove’ or ‘required to find’. Velleman
provides many illustrative examples of different methods of proof some of which
are also used in this book.
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with the algebraic properties assumed. However, inequalities are less
familiar and so it seems useful to list the basic properties to be assumed.

Axioms 3.1.2

(i) Trichotomy law. For each pair of reel numbers a and b, one and
only one of the three possibilities a < b, a =b, a > b is true.
(ii) Addition law. For real numbers a, b and c,

a<beat+c<b+e
(iif) Multiplication law. For real numbers a, b and c,

a<b & ac<bc ifc>0,
a<b & ac>bc ifec<0.

(iv) Transitive law. For real numbers a, b and c,
a<bandb<c=>a<ec

Now statements (3.1) and (3.2) follow from the multiplication law and
statement (3.3) from the transitive law.
We can now write out a formal proof of Proposition 3.1.1 as follows.

Proof Given positive real numbers a and b suppose that ¢ < b. Then
a® < ab (multiplying through by a > 0) and ab < b? (multiplying
through by b > 0). Hence a? < b?. It follows that a < b= a? < b?. [

Notice that this proof is written as a sequence of sentences with words
like ‘then’, ‘hence’ and ‘it follows’ indicating how the sentences are re-
lated. Of course some symbols are used but it is a good practice when
writing mathematics to read it out aloud to check that when the sym-
bols are converted into words (‘a is less than b’ in the first sentence of
the above proof for example) what you have written is a sensible piece
of prose. We do sometimes use more symbols so that the above proof
might have been written out as follows.

Proof For positive integers a and b, @ < b = (a? < ab and ab < b?) =
a? < b%. Hence a < b= a? < b?. O

This presentation highlights the fact that in constructing a proof as a
chain of implications we repeatedly use

[(P=Q)and (Q=> R)]= (P=R)
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which is readily checked by using a truth table.}

However, I would encourage the reader to beware of using too many
symbols in writing out proofs at this stage as it makes it much harder
to be clear that what you are writing is conveying what you intend.

Notice how the ‘and’ statement was handled in this proof. An im-
plication of the form ‘P = (Q and R)’ is logically equivalent to ‘(P =
Q) and (P = R)’. Thus ‘a < b= (a® < ab and ab < b?) is proved by
proving (3.1) and (3.2).

One problem in writing out proofs is to decide how much detail to
give and what can be assumed. There is no simple answer to this.
Although the above proof did start from the inequality axioms this was
not explicitly referred to in the formal proof. You always do have to
start somewhere. But it is cumbersome to reduce everything to a set of
axioms and there is usually a wide body of results which it is reasonable
to assume. For example the result of Proposition 2.2.4 that 101 is an odd
number is something which normally would simply be taken for granted.
It was explored in Chapter 2 simply to illustrate the role of definitions.
One very useful piece of advice is always to be sceptical, for if your proof
doesn’t convince you, then it is unlikely to convince anyone else. Notice
that the above proof did refer to the facts that a > 0 and b > 0 at the
points where they were needed (in applying the multiplication law of
inequalities). It is good style to indicate where the hypotheses in the
result being proved are used in the proof. Also if some steps in the
argument are only valid under certain conditions then you should verify
that these conditions are indeed satisfied.

Proof by cases

When proving universal implications it is often very difficult to consider
together all the objects satisfying the hypothesis. Here is a very simple
example.

Example 3.1.3 Ifa=1ora=2 thena®? —3a+2=0.

Proof Ifa =1thena?—3a+2=1-3+2=0. Ifa =2thena?—3a+2 =
4—-6+2=0. Hence,ifa=1o0r a=2thena®—-3a+2=0. O

Notice how the ‘or’ statement was handled in constructing this simple
proof. An implication of the form ‘(P or Q) = R’ is logically equivalent
t This step is known in formal logic as a ‘syllogism’: P is the ‘minor term’, Q the

‘middle term’ and R the ‘major term’; P => Q is the ‘minor premise’ and Q = R
the ‘major premise’.



26 Part I: Mathematical statements and proofs

to the statement ‘(P = R) and (@ = R)’ (this is common usage but
can be checked by a truth table argument) and so is proved by proving
the two implications in this ‘and’ statement.

In this example the ‘cases’ were simply the two numbers satisfying the
hypothesis. It can be viewed as ‘proof by enumeration’ working through
the possibilities one by one. This is not always possible. Recall the proof
of Proposition 2.2.4 on page 16. The aim was to prove the universal
implication ‘if q is an integer then 2¢ # 101’. It is impossible to work
through the integers one by one. The proof was achieved by considering
two cases: integers ¢ such that ¢ < 50 and integers ¢ such that ¢ > 51.
This argument works because these two cases are erhaustive: for every
integer ¢ either ¢ < 50 or ¢ > 51.

Here is another example deriving a familiar property of the integers
from the inequality axioms.

Proposition 3.1.4 For non-zero real numbers a, a? > 0.
Constructing a proof. Summarizing what is needed gives the follow-
ing.

Given l Goal

a a real number
a#0 a’?>0

The trichotomy law is the only inequality axiom which refers to the
equality of real numbers. If we apply this to the real numbers a and 0
it can be rewritten

a#0=>a>00ra<0. (3.4)
However, from the multiplication law,
a>0=a?>>0 (3.5)
and
a<0=a®>0. (3.6)
Hence
a>0ora<0=da’>>0. (3.7)

Finally, putting together statements (3.4) and (3.7) we obtain
a#0=>a°>0

as required.
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‘We can now write out the formal proof as follows.

Proof Suppose that a is a non-zero real number. Then (by the tri-
chotomy law) either a > 0 or @ < 0. In either case, from the multiplica-
tion law, a? > 0. Hence, if a # 0 then a? > 0 as required. a

Again notice how the ‘or’ statement was handled in constructing this
proof. To prove statement (3.7) we must prove both statement (3.5) and
statement (3.6).f

3.2 Constructing proofs backwards

The grand thing is to be able to reason backwards.
Arthur Conan Doyle, A study in scarlet.

The process of mathematical investigation is extremely complex. Even
when you know what you are trying to prove it is quite unusual in
practice to be able construct proofs in the direct way which has been
illustrated so far. One analogy which may be helpful is that of creating
or discovering a route up a mountain. You may succeed by simply
heading off towards the top. But often there will be a number of false
starts and it may be helpful to stand back and take an overview of
what is possible. You may find that for certain routes your technique is
inadequate and you need to refine this on less ambitious projects. One
possible approach is to develop your route by mentally working back
from the summit, in other words by planning the route backwards. This
is frequently a sensible approach to constructing mathematical proofs.

It may be worth remarking that this analogy seems useful when we
ponder the nature of mathematical invention: is mathematics discovered
or created? A new route up a mountain is both discovered and created;
it is to some extent is rediscovered and recreated every time someone
subsequently uses it — it may even be slightly different each time. But
the route appears to have an objective existence independent of those
who use it. The same is true of mathematical ideas.

Here is an example requiring a little more thought than the results
considered so far.

Proposition 3.2.1 For real numbers a and b, a < b = 4ab < (a + b)2.

t It is necessary to be careful about the way the words ‘and ’ and ‘or’ are used in
normal speech. For example statement (3.7) might be formulated using the word
‘and’ as ‘a > 0 and a < 0 (both) imply that a? > 0’. This is really a shorthand
for ‘a > 0 implies that a2 > 0 and a < 0 implies that a2 > 0’.
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Constructing a proof. We can summarize what is needed for a direct
proof as follows.

Given [ Goal
a, b real numbers
a<b 4ab < (a +b)?

It is difficult to see how to proceed. Onme difficulty is that the goal is
more complicated than the given statement and it is not immediately
clear how to reach this more complicated statement. In such a situation
it is often best to start with the more complicated statement and to
simplify it. In this case simplifying the goal leads to the construction of
a proof backwards.

4ab < (a+b)? <« 4ab<a®+ 2ab+b?
< 0<a?—2ab+b?
< 0<(a—b)?
< a—b# 0 by Proposition 3.1.4
< a#b
< a<hb

Hence a < b= 4ab < (a + b)2.

It is essential for the proof that these implications go in the direction
shown. Of course, apart from the last step, in this case they do in fact
go in both directions, and it would be usual to write ‘<’ instead of ‘<’
in those cases. But the fact that the implications ‘=’ are true is quite
irrelevant for the proof. The above sequence of implications is perfectly
satisfactory as a formal proof for it makes it clear that the truth of the
goal is ¢mplied by what is given. If preferred the proof can be presented
as a direct proof as follows.

Proof a<b=>a#b=>a-b#0=>0<(a—b)?=0<a?—-2ab+b*>=>
4ab < a? + 2ab + b? = 4ab < (a + b)%. Hence a < b = 4ab < (a + b)2.
.

However, presenting the proof in this way disguises where it has come
from. Whilst readers of the proof may accept each of the steps and so be
forced to accept the proof they would probably find the earlier backwards
presentation more satisfying because it demonstrates how the proof was
found.
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Exercises

3.1 Prove that for all real numbers a, b and c,
(i) (@+b-c)?=(a+b?+(a—c)?+(b—c)%—a?-b* -2,
(ii) dc+ac+ab < a® +b% + 2.

3.2 Prove that for all integers a, b and ¢,

(a divides b) and (b divides c) = a divides.c.
3.3 Prove that the square of an even integer is even.
3.4 Prove that 0 divides an integer a if and only if a = 0.

3.5 Prove, from the inequality axioms, that if a, b and c¢ are real numbers
with a > 0, then b > ¢ = ab > ac.

3.6 Prove that for negative real numbers a and b, a < b = a? > b

3.7 Proposition 3.2.1 states that a < b is a sufficient condition for 4ab <
(a + b)2. Is this condition also necessary? If so, prove it. If not, find a
necessary and sufficient condition.

3.8 Prove that for all real numbers a and b,

(i) 0<a<b=a?<d?
(ii) |a] < [b] = a2 < b2,
(iii) |a| = |b] = a2 = b2,
(iv) la] < [b] = a® <.
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Proof by contradiction

In the previous chapter we considered how to construct some simple
direct proofs. However, the direct method can be inconvenient and does
not always work. In this chapter we consider a logically more elaborate
but very common and powerful method of proof: proof by contradiction.

4.1 Proving negative statements by contradiction

The direct method of proof is often hard to use when we are proving
negative statements. Consider the following example.

Proposition 4.1.1 There do not exist integers m and n such that
14m + 20n = 101.

This is a simple example of a non-existence result and results of this
type are very common in more advanced mathematics.

It is difficult to see how to prove Proposition 4.1.1 directly for we
clearly cannot consider all the possibilities for m and n one at a time.
The method of proof by contradiction is to demonstrate that if what
we are trying to prove were false then this would lead to a statement
which is known not to be true, a contradiction. A contradiction is a
statement of the form ‘P and (not P)’. For example, if a is an integer,
the statement ‘a is even and a is odd’ is a contradiction since ‘odd’ is
defined to mean ‘not even’. Having obtained a contradiction we know
that our initial assumption must have been wrong and so the result we
are trying to prove must be true.

This may sound confusing and so before we consider in general how
this method can be justified let us illustrate it by considering the proof
of Proposition 4.1.1.

30
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Constructing a proof. The proposition states that whatever integers
m and n we choose these will not satisfy the equation, i.e. 14m + 20n #
101. We can sum this up as follows.

Given ] Goal
m,n integers | 14m + 20n # 101

A proof by contradiction is given by showing that if the goal were
false then this would lead to something which we know not to be true,
a contradiction. Then since this shows that the negative of the goal is
impossible it means that the goal must be true in accordance with the
following precept of Sherlock Holmes’.

When you have eliminated the impossible, whatever remains, however improb-
able, must be the truth.
Arthur Conan Doyle, The sign of four.

The method is carried out by adding the negative of the goal to the
givens and making the finding of a contradiction the new goal. In this
case this gives the following strategy.

Given | Goal
m,n integers
14m + 20n = 101 contradiction

Here we can get a contradiction by using the idea of even and odd
numbers. Notice that both 14 = 2 x 7 and 20 = 2 x 10 are even numbers
and so any number of the form 14m + 20n, where m and n are integers,
is also even since 14m + 20n = 2(7m + 10n). Thus if 14m + 20n = 101
this means that 101 is an even number. But 101 is an odd number (see
Proposition 2.2.4 for a formal proof but we would usually assert this
without proof) and so we have two contradictory statements about 101
giving a contradiction as required.

The proof is quite short when written out in final form. Notice that
we include the phrase ‘for contradiction’ in the first sentence in order to
indicate the method we are using.

Proof Suppose for contradiction that m and n are integers such that
14m + 20n = 101. Then, since 14 is even and 20 is even, 101 = 14m +
20n = 2(7m + 10n) is even. But this is not true since 101 is odd. Hence
such integers m and n cannot exist, as required. O

We can justify this method using a truth table. Suppose that we are
trying to prove statement P. The method of contradiction is to prove
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the statement (not P) = Q where @ is a false statement. Now look at
the following truth table.

P notP Q| {(notP)=Q
T F T T
T F F T
F T T T
F T F F

If we know that (not P) = @ is true and @ is false, then the only
possibility in the above table is the second line. But this shows that P
is true.

A template for proofs by contradiction

It may be useful to present a template for writing out these proofs.
Suppose that we are writing out a formal proof of the statement P
using the contradiction method. We would set out the proof as follows.

Proof Suppose, for contradiction, that the statement P is false.
Then [present some argument which leads to a contradiction of
some sort].

Hence our assumption that P is false must be false.

Thus P is true as required. O

A common failing in writing out proofs by contradiction is for it to.
be unclear precisely what the contradiction is. Take care to make this
clear.

As a second example here is an alternative proof of Proposition 2.2.4
using this method.

Proposition 2.2.4 101 is an odd integer.

Constructing a proof. This appears to be a positive statement but
since the word ‘odd’ means ‘not even’ it too is a non-existence result
since it asserts that 101 is not a multiple of 2. We can describe this as
follows.

Given | Goal
g an integer l 2¢ # 101
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In Chapter 2 the goal was achieved by considering all the possibilities for
g. Although it is not possible to consider these one at a time we could
take account of all the possibilities by observing that for any integer ¢
either ¢ < 50 or ¢ > 51. It was observed in Chapter 3 that this is an
example of a proof by cases.

As an alternative we can apply the method of proof by contradiction
which leads to the following strategy.

Given | Goal

¢ an integer
2¢ =101 contradiction

We get a contradiction if we remember how we did division in our early
school-days. Then we would have divided 2 into 101 giving 50 with
remainder 1. This suggests

101=2¢=>1=101-100=29—2x50=2(¢—50)>2 =12

and we have a contradiction since it is certainly true that 1 < 2.

Proof Suppose for contradiction that 101 is even so that 101 = 2¢q for
some integer q. Then 1 = 2(q — 50) where ¢ — 50 must be a positive
integer. But 2(¢ — 50) > 2 so that 1 > 2 contradicting the fact that
1 < 2. Hence 101 is not even and so must be odd. ]

4.2 Proving implications by contradiction

We sometimes find that the direct method of proof of statements of the
form P = @ does not work. Consider the following result.

Proposition 4.2.1 If a, b, ¢ are integers such that a > b, then
ac<bc=c<0.

Constructing a proof. It is difficult to know how to make use of the
multiplicative law of inequalities (see Axioms 3.1.2) in a direct proof
since this depends on the sign of ¢ which is what we are trying to deter-
mine.

The easiest thing to do in this case is again a proof by contradiction.
Notice from the truth table for ‘implies’ (Table 2.1.1) that if P = Q
is false then we must have P true and () false. So we can prove that
P = (@ is true by showing that P true and @ false together imply a
contradiction.
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What we are asked for in Proposition 4.2.1 may be summarized as
follows.

Given | Goal
a, b, c integers
a>b ac<bc=c<0

An attempt at a direct proof of the proposition leads to the following
strategy.

Given I Goal
a, b, ¢ integers
a>b
ac L be c<O0

The method of proof by contradiction is to add the negative of the
desired conclusion to the ‘givens’ and to seek a contradiction. This gives
the following strategy.

Given I Goal
a, b, c integers
a>b
ac < be
c>0 contradiction

It is easy to obtain a contradiction. For by the multiplicative law of
inequalities (Axioms 3.1.2)

a>band ¢> 0= ac> b

Hence, since our given statements include the statement ac < bc, they
imply that ac > bc and ac < bc which is a contradiction.
The proof is quite short when written out in final form as follows.

Proof For integers a, b and ¢, with a > b, suppose that ac < bc but,
for contradiction, that ¢ > 0. Then the given statement a > b implies
that ac > be, contradicting the statement that ac < bc. Hence our
assumption that ¢ > 0 must be false, i.e. ¢ < 0. Thus ac < bc = ¢ < 0.

O

4.3 Proof by contrapositive

In the proof of Proposition 4.2.1 the contradiction we obtained involved
the hypothesis in the proposition. This is a particular form of proof by
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contradiction. It essentially uses the fact that, given any statements P
and @, the statements ‘P = Q’ and its contrapositive ‘(not Q) = (not
P)’ are equivalent, as can be seen by examining their truth tables (see
Exercise 2.5). Thus if one is true then so is the other. Now Proposi-
tion 4.2.1 is a statement about integers a, b and ¢ such that a > b, of
the form P = @ where

P is the statement ac < be,
Q is the statement ¢ < 0.

To write down the contrapositive notice that

{(not P) is the statement ac > bc,
(not Q) is the statement ¢ > 0,

and so the statement (not Q) = (not P) reads
¢> 0= ac> be,

where a, b and c are integers such that a > b. But this is just the mul-
tiplicative law of inequalities included in Axioms 3.1.2. Hence we could
have proved Proposition 4.2.1 by simply observing that its contrapositive
is true. We would write out this proof as follows.

Proof of Proposition 4.2.1 The contrapositive of the statement

ac<be=e<0
is the statement
c¢>0=ac>bc

which is just the multiplicative law of inequalities since we are given that
a > b. Thus the proposition is true. O

4.4 Proving ‘or’ statements

Constructing a proof for composite statements involving ‘or’ usually
makes use of a logical construction rather similar to proof by contra-
diction which it is convenient to consider at this point. Again let us
consider an example.

Proposition 4.4.1 If a and b are real numbers, then

ab=0&a=00rb=0.
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Constructing a proof. Recall from Chapter 2 that the statement
‘P & @ means ‘(P = Q) and (Q = P)’. So there are two parts to the
proof: a proof of the ‘<’ statement and a proof of the ‘=’ statement.
We consider these in turn.

‘«<=’: This statement is a restatement of a basic property of the number
0, that 0 x b = 0 = a x 0 for real numbers a and b. This property was
mentioned in the discussion at the end of Chapter 2.t

‘=’ Adopting the direct strategy for proving the converse statement
gives the following strategy.

Given | Goal
a, b real numbers
ab=0 a=0o0rb=0

Now recall that ‘P or @’ is logically equivalent to ‘(not P) = @’ (see
Exercise 2.5) so that the goal may be rewritten ‘a # 0 = b = 0.
Adopting the direct strategy for proving this gives the following.

Given ] Goal
a, b real numbers
ab=0
a#0 b=0

Since a # 0, we can divide through by a (or multiply through by 1/a)
so that ab = 0 = b = 0 as required.
A formal proof could be set out as follows.

Proof 1t is a basic property of 0 that 0 x b = 0 = a x 0. Therefore
a=0orb=0=ab=0.

For the converse, suppose that a and b are real numbers such that
ab = 0. To see that it follows that a = 0 or b = 0 suppose that a # 0.
Then dividing ab = 0 through by a gives b = 0, as required. Hence
ab=0=>a=00rb=0. O

An alternative method of obtaining this result is by proof by cases.
The trichotomy law of inequalities tells us that, for any real number
a,a <0ora=0ora>0. This gives three possibilities for ¢ and
similarly there are three possibilities for b, leading to nine possibilities

t Problems I, Question 6 asks for a formal proof of this result from Properties 2.3.1.



Chapter 4: Proof by contradiction 37

in all. These can be summarized in a table as follows.

|a<0 a=0 a>0
b<0|jab>0 ab=0 ab<0
b=0{ab=0 ab=0 ab=0
b>0jab<0 ab=0 ab>0

This comes from the multiplicative law of inequalities and the fact that
ab=0ifa=00rb=0.

Now since all possibilities are included in this table we can read off
Proposition 4.4.1 and also the following useful results.

Proposition 4.4.2 If a and b are real numbers, then ab > 0 if and only
if a and b have the same sign, i.e. (a > 0 and b > 0) or (a < 0 and
b<0)

Proposition 4.4.3 If a and b are real numbers, then ab < 0 if and only
if @ and b have opposite signs, i.e. (a > 0 and b < 0) or (a < 0 and
b>0)

Formally the right to left implications in these results come from the
multiplicative law of inequalities and the left to right implications are
proved by contradiction using the above table which shows, for example,
that if @ and b do not have the same sign then ab is not positive.

Proposition 4.4.1 is used when we solve polynomial equations and in
the same way we use the other two results to solve polynomial inequal-
ities (see Exercise 6.2).

Exercises

4.1 Prove by contradiction that there do not exist integers m and n
such that 14m + 21n = 100.

4.2 Prove by contradiction that for any integer n

n? is odd = n is odd.

4.3 Prove the result of the previous exercise by writing down its con-
trapositive.

4.4 Prove, using the method given above for proving an ‘or’ statement,
that if a is a real number such that a2 > Ta thena < Qora > 7.
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4.5 Prove by contradiction from the trichotomy law that, for any real
numbers a and b,

a<bandb<a=a=0b.
4.6 Write down the contrapositive of the statement of Exercise 3.8(iv).
Hence prove that, for all real numbers a and b,
(i) |a| < |b] if and only if a® < b2,
(ii) |a| = [} if and only if a2 = b2.
4.7 Prove that, for all real numbers a and b,
la+ b] < |a| + {b].

Give a necessary and sufficient condition for equality.
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The induction principle

The essence of the natural number concept is ... closure under the successor
operation.t
Richard Dedekind (1888)

In this chapter we discuss a special proof technique which is particu-
larly useful when proving statements about the positive integers.

5.1 Proof by induction

Suppose that we wish to prove that some property holds for all the
positive integers 1, 2, 3, 4, ... . It is often difficult, or even impossible,
to prove such statements simply from basic rules of arithmetic. What
these rules fail to capture is the fact that the positive integers come in
a sequence with any number obtainable by starting from the number
1 and adding 1 to it enough times. The integer n + 1 is called the
successor of the integer n. Thus, if we start with the integer 1 and form
its successor, and then its successor, and so on, then given any positive
integer eventually it will be reached. This idea can be formulated more
precisely as follows.

Axiom 5.1.1 (The induction principle) Suppose that P{n) is a state-
ment involving a general positive integer n. Then P(n) is true for all
positive integers 1, 2, 3, ... if
(i) P(1) is true, and
(ii) P(k) = P(k+ 1) for all positive integers k.
Before discussing the induction principle further, here is an example
of how it is used.

t The significance of this quotation will be discussed further in Section 9.4.

39



40 Part I: Mathematical statements and proofs

Proposition 5.1.2 For all positive integers n we have the inequality
n < 2",

Constructing a proof. When using the induction principle it is im-
portant to be clear about what constitutes the predicate P(n). In this
case P(n) is the statement

n< 2™

Let us begin by comparing the two numbers n and 2" in some partic-
ular cases.
n|l 23 4 5 6
2" {2 4 8 16 32 64

From this we can see that the result certainly holds for n = 1, 2, 3,
4, 5 and 6 and it seems highly plausible that the result will hold for
all positive integers n. However, testing any number of cases does not
constitute a proof that the result will always hold. In this example the
above table suggests more than just that the result holds for certain
particular values of n. It demonstrates that the numbers in the second
row are growing much more rapidly than the numbers in the first row and
if this continues then it would be a strong indication that the result P(n)
holds for all positive integers n. The proof of the result by induction
makes this argument precise.

Referring to Axiom 5.1.1, we see that it asserts that two statements
will lead to the proposition.

(i) The statement P(1) simply says that 1 < 2 which is certainly true.
This is called the base case.

(ii) The second statement that is needed is called the inductive step. We
are to prove for each positive integer k that P(k) = P(k + 1), in other
words that if P(k) is true then so is P(k + 1). Here the statement P(k)
is often referred to as the inductive hypothesis, for the aim is to prove
P(k + 1) under the hypothesis that P(k) is true.

We can sum up what is needed for a direct proof of the inductive step
in this case as follows.

Given | Goal
k a positive integer
k< 2k k41 2%+

In order to obtain the goal we try to relate it to the inductive hypothesis.
So we start with one side of the inequality required and express it in
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terms of one side of the inequality of the hypothesis. One possibility is
the following.

k+1 2% 11 (by inductive hypothesis)
2 + ksincek > 1
2k 4 2% (by inductive hypothesis)

2 x 2F = ok+1

N ININ

il

Alternatively we can start on the other side as follows.

2F+1 =2 x 28 > 2k (by inductive hypothesis)
k+k
> k+1

i

We write out the formal proof (using the second approach) as fol-
lows.

Proof We use induction on n.

Base case: For n =1, 2" = 2 and so, since 1 < 2, n < 2™.

Inductive step: Suppose now as inductive hypothesis that k < 2* for a
positive integer k. Then 2¢+1 = 2 x 2F > 2k (by inductive hypothesis)
=k+k>k+1andso 25! > k41 as required.

Conclusion: Hence, by induction, n < 2™ for all positive integers n. [

The idea of induction is that, since P(1) is true (explicitly checked)
and also P(1) = P(2) (special case of inductive step), we know that
P(2) is true, and now since P(2) = P(3) we know that P(3) is true,
and so on: P(3) = P(4) = P(5) = ... . Eventually this process will
reach P(n) for any specified positive integer n. It might be thought that
this is ‘obvious’ and in a way it is. But this is because our intuitive
ideas about what the integers are include more than the fact that they
can be added, multiplied and compared in size. The induction principle
is simply a formulation of something which we take for granted about
the integers: that we can reach any positive integer by starting from 1
and repeatedly adding 1. Suppose that we think of the integers lined up
like dominoes. The inductive step tells us that they are close enough for
each domino to knock over the next one, the base case tells us that the
first domino falls over, the conclusion is that they all fall over.t
1 The fault in this analogy is that it takes time for each domino to fall and so

a domino which is a long way along the line won’t fall over for a long time.
Mathematical implication is outside time.
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Formally, the induction principle is another axiom about the integers,
in addition to the algebraic and order axioms.

It is important to realize that we cannot prove a result like Proposi-
tion 5.1.2 by considering each case in turn. For any specific value of n
we can check the result by calculation. For example, consider n = 8:
since 28 = 256 and 8 < 256, the statement P(8) is true. But however
many individual cases we checked numerically we would not know that
the result always held. Indeed there are mathematical statements (such
as statement (iv) in Section 1.1) which are known to be true for a huge
number of special cases but which have not yet been proved. Proof by
induction is not the only way of proving general statements about the
positive integers but it does provide an enormously powerful technique.

In writing out proofs by induction it is important to make it clear
that this is the method being used and to be absolutely clear what is
the statement P(n) that is being proved. If you do no more in developing
a proof before writing out a formal proof you should certainly write down
what the statement P(n) is.

A template for proofs by induction
It is a good approach for your proofs to follow a standard pattern. First
identify the statement P(n) and be clear what the statements P(1),

P(k), P(k +1) each say. Then when you write out the formal proof use
the following template.

Proof We use induction on n.

Base case: [Prove the statement P(1)]

Inductive step: Suppose now as inductive hypothesis that [P(k) is
true] for some positive integer k. Then [deduce that P(k + 1) is
true]. This proves the inductive step.

Conclusion: Hence, by induction, [P(n) is true] for all positive
integers n. O

There are many variants of this layout. In particular, the conclusion
line is often omitted and including the words ‘base case’, ‘inductive step’
and ‘conclusion’ is not usual. However, as you begin to apply the in-
ductive method, using this template helps to emphasize what such a
proof involves. The first two parts (base case and inductive step) are
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concerned with verifying the conditions in Axiom 5.1.1 and then the last
part {conclusion) invokes the axiom.

Here is another example with the proof laid out according to the above
template [with a few comments in brackets].

Proposition 5.1.3 For all positive integers n the number n®+n is even.

Proof We use induction on 7.

[In this case the statement P(n) to be proved for all positive integers
is ‘n? + n is even’ or equivalently ‘2 divides n? + n’ which means that
‘n? + n = 2q for some integer ¢’ (using Definitions 2.2.1 and 2.2.2).]

Base case: Forn=1,n2+n=1+4+1=2=2 x 1, an even number, as
required.

Inductive step: Suppose now as inductive hypothesis that k2 +k is even
for some positive integer k. Then k2 + k = 2q for some integer gq.

[Notice now that the statement P(k + 1) is ‘(k + 1)2 + (k + 1) is even’.]

Then (k+1)2+(k+1) = k2+2k+1+k+1 = (k2 +k)+2k+2 = 2g+2k+2
(by inductive hypothesis) = 2(¢ + k + 1) = 2p, where p is the integer
g+k+1,and so (k+1)%+ (k + 1) is even as required.

Conclusion: Hence, by induction, n? + n is even for all positive integers

n. O

Often the symbol n is used again when dealing with the inductive step
instead of introducing the new symbol k, i.e. the inductive step reads
P(n) = P(n+1) for all positive integers n. The reason for introducing
a new letter is that it is easier to write down P(k + 1) by substituting
k+1 for n in P(n). Substituting n+ 1 for n to obtain P(n+1) can lead
to confusion and a common error in inductive proofs is getting P(k + 1)
wrong. I would recommend avoiding the double use of the symbol n at
least until you are very familiar with inductive proofs.

The examples given in this chapter are quite simple so that we can
concentrate on the method. There will be many more examples in this
book and the method is very common. Quite a bit of ingenuity may
be required in proving the inductive step and even, on occasion, in foi-
mulating the statement P(n) properly. The reader will sometimes meet
inductive proofs presented informally using phrases like ‘and so on’ with
a comment that a formal argument can be written out using induction;
in these cases it can be useful for the reader to try to do this.
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5.2 Changing the base case

The induction principle is used to prove a statement about positive
integers by first proving the statement for the integer 1 as the base
case and then proving that if it holds for some positive integer then
it necessarily holds for its successor. However, the same idea can be
used starting from any integer as the base case. Suppose that ng is an
integer, positive, negative or zero. Induction can be used to prove that
a statement P(n) is true for all integers n such that n’'> ng. The base
case is now P(ng) and the inductive step is P(k) = P(k+1) for k > ny.
The basic template given above becomes the following.

Proof We use induction on n.

Base case: [Prove the statement P(ng)]

Inductive step: Suppose now as inductive hypothesis that [P(k)
is true] for some integer k such that k > ng. Then [deduce that
P(k + 1) is true]. This proves the inductive step.

Conclusion: Hence, by induction, [P(n) is true| for all integers
n = ng. O

This is illustrated in the following result comparing the sizes of n? and
2". Calculating these numbers for low values of n gives the following
table.

n|1 23 4 5 6 7 8
n?|1 4 9 16.25 36 49 64
2"12 4 8 16 32 64 128 256

This suggests the following result.
Proposition 5.2.1 For all integers n such that n > 4, we have the
inequality n? < 27,

Constructing a proof. The inductive step of a proof by induction on
n reads

k2 <2k=>(k+1)2 <2k+1

for integers k£ > 4. We can achieve the right-hand side of the conclusion
inequality by multiplying the hypothesis inequality by 2 giving

2k2 < 2k+1.
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Now, if we can prove that (k+1)2 < 2k? then we can complete the proof
of the inductive step using

(k+1)2 < 2k% <28 = (k4 1) g 2k+L,

But this inequality is readily proved for k > 4 by expanding the brackets
and simplifying.

Proof We use induction on n.

Base case: For n =4, n? = 16 and 2" = 16 and so n? < 2™.

Inductive step: Suppose now as inductive hypothesis that k? < 2F for
some k > 4. Then 2%¥+! = 2 x 2% > 2k2? (by inductive hypothesis). So we
will have proved that 25*! > (k+1)? if we can prove that 2k? > (k+1)2.
But 2k% > (k+1)2 ¢ 2k? > k2 +2k+1 < k? > 2k+1 and, since k > 4,
k%2 > 4k > 2k +2 > 2k + 1 so that k% > 2k + 1. Hence 2k? > (k + 1)?
and so we have deduced that (k + 1)2 < 2*¥+! as required to complete
the inductive step.

Conclusion: Hence, by induction, n? < 2" for all n > 4. g

Notice that induction starting from a base case other than 1 is not
really an extension of the induction principle in Axiom 5.1.1. Consider
the statement that P(n) is true foralln > ng. f weput m=n—-ng+1
then n 2> ng if and only if m > 1. Thus, since n = m +ng — 1, P(n) is
true for all n > ng if and only if P(m + ng — 1) is true for m > 1. The
inductive proof of P(n) with base case n = ng is essentially identical to
the inductive proof of P(m+mng—1) with base case m = 1. For example,
the result of Proposition 5.2.1 can be rewritten as (m + 3)% < 2™*3 for
m 2 1. In this form, the result can be proved by induction with base
case m = 1 and if the reader writes out such a proof it will be clear that
it is almost identical to the proof given above.

5.3 Definition by induction

Consider the following result.

Proposition 5.3.1 The sum of the first n positive integers 14-2+...4+n
is equal to In(n+1).

Whenever you see a line of dots indicating ‘and so on’ this indicates
a definition by induction (sometimes called a definition by recursion).
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In this case, a more precise notation for the sum of the first n positive
n

integers is E i.

i=1

Definition 5.3.2 Given a sequence of numbers a(1), a(2), ..., the num-

n
bers Za(i) for positive integers n are defined inductively by the fol-

i=1

lowing statements:

1
(i) Y a(i) = a(1); and
i=1

k+1 k
(i) > a()) =) a@)+a(k+1) fork>1.
=1 i=1

Again we have a base case which tells us what the notation means in
the case n = 1 and an inductive step which tells us what it means for
n = k+ 1 in terms of what it means for n = k. For any specific value of
n we can evaluate the expression by repeated use of the inductive steb.
Thus, for example,

3 2
Z a(i) = Za(i) +a(3) (by (ii) for k = 2)
=1 =1
= Za(i) +a(2)+a(3) (by (i) for k=1)

a(l)+a(2)+a(3) (by (i)).

Using this notation we can rewrite Proposition 5.3.1 as follows.

Proposition 5.3.1 For positive integers n,

Zi = %n(n +1).

=1

n
In this case Zz is defined using Definition 5.3.2 with a(z) = <.
i=1
Constructing a proof. We have to make use of the inductive definition
in constructing a proof by induction. In this case the statement P(n) is
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the equation in the proposition. So P(k) is

i Lk
=1 2
and P(k+1)is
kfi: Yr (ke +1) = S+ 1)k +2).
2.'73 2

Let us proceed directly to the formal proof.

Proof We use induction on n.

n
Base case: Forn = 1, Zz =1land jn{n+1) = 1-1-2 = 1 and therefore

n
Zz’ =inn+1).
i=1

Inductive step: Suppose now as inductive hypothesis that

i=1

k

di= %k(k +1)

i=1
for some positive integer k. Then

k+1

D
i=1

k
Zi +(k+1) (by definition)
i=1

= %k(k +1)+(k+1) (by inductive hypothesis)

= S+ Dk+2)

and so
k+1 1
di= 5k +1)(k+2)
i=1
as required. n
Conclusion: Hence, by induction, Zz = %n(n + 1) for all positive
integers n. i=1 O

Inductive definitions are implicit in the definitions of several very com-
mon functions involving the non-negative integers.
Here are some familiar examples.
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Definition 5.3.3 For any real number z, the powers |x™| for non-

negativet integers n are defined inductively by:

(i) z° =1; and

(ii) zF*! = - 2* for non-negative integers k.

If you look back to the proof of Proposition 5.1.2 you will see that we
made use of this in the form 25+1 = 2 x 2k,

In the expression z™, the number n is called the index or the exponent
and the number z is called the base.

Definition 5.3.4 For non-negative integers n, the numbers| factorial n |,

written , are defined inductively by:

(i) 0! =1; and
(i) (k+ 1) = (k+1) x k! for non-negative integers k.

Notice that n = 0 is the base case in this definition.

Indeed, even the basic operations of addition and multiplication of
integers can be defined inductively starting from the notion of successor
(see Definition 9.4.3).

5.4 The strong induction principle

For completeness at this point we consider another variant of the in-
ductive method although if the reader is meeting this method of proof
for the first time the remainder of this chapter (apart from the exer-
cises) should be omitted at first reading. The method will not be used
subsequently until the proof of Proposition 23.1.2.

Sometimes we discover that P(k + 1) is not implied by P(k) alone
but is implied by the truth of P(k) together with some or all of P(1),
P(2), ..., P(k —1). In this case we work with the following version of
induction.

Axiom 5.4.1 (The strong induction principle) Suppose that P(n)

t+ This definition allows z = 0 and n = 0 and sets 0° to be 1. This is the convention
only in certain contexts such as Exercise 5.4 where we use the notation E?:o z*
to represent the geometric progression 1 4+ ¢ + 22 + ... + 2™ even when z = 0.
However, some care is required and in certain other contexts it is not possible to
attach a sensible meaning to 0°. A little more is said about this difficulty in the
solution to Exercise 5.6 and in a footnote to Example 9.2.4(b).
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is a statement involving a general positive integer n. Then P{n) is true
for all positive integers n if
(i) P(1) is true, and
(ii) [P(n) holds for all positive integers n < k] = P(k + 1), for all
positive integers k.

It is not difficult to see that this is equivalent to Axiom 5.1.1.
In this case the basic template is as follows.

Proof We use (strong) induction on n.

Base case: [Prove the statement P(1)]

Inductive step: Suppose now as inductive hypothesis that [P(n)
is true for all positive integers n < k] for some positive integer
k. Then [deduce that P(k + 1) is true]. This proves the inductive
step.

Conclusion: Hence, by induction, [P(n) is true| for all positive
integers n. O

As an illustration of the use of this form of induction we introduce the
Fibonacci numbers.

Definition 5.4.2 For each positive integer n define the number u, in-
ductively as follows.

ug = 1,
Uy = 1,
Uk4l = Ug—1 + Uk fork = 2.

The beginning of this sequence of numbers is 1, 1, 2, 3, 5, 8, 13, 21, 34,
55, 89, 144, ..., and the sequence is known as the Fibonaccit sequence.
The important observation which concerns us now is that each number

t Leonardo of Pisa (ca. 1180-1250), who published his best known book Liber abaci
in 1202, wrote under the name of Fibonacci. He was largely responsible for intro-
ducing Hindu—Arabic algebra and numerals to Europe and is often considered the
greatest European mathematician of the Middle Ages. His name was attached to
these numbers by the nineteenth century number theorist Edouard Lucas because
of a problem in the Liber abaci concerned with the reproduction of rabbits whose
solution involves them (see Problems I, Question 24). The early numbers occur
frequently in nature, for example the number of petals in most flowers is a Fi-
bonacci number. Also the sequence has many beautiful mathematical properties
and there is even a scholarly journal The Fibonacci Quarterly devoted to articles
about the sequence and related topics.
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is determined not simply by the previous one as in a simple inductive
definition but by the previous two numbers. This means that we must
specify the first two numbers as the base case of the definition.

Proposition 5.4.3 (The Binet{ formula) The Fibonacci numbers
are given by the following formula:

un = (@ — 6")/V/5,
where a = (1+v/5)/2 and B = (1 — v/5)/2.

It should be observed that o and B are the roots of the equation
22—z—1=0and so a? = a+1 and #% = B+ 1. The reader may find it
remarkable that this formula for these integers involves /5 which is most
certainly not an integer; in fact, as we will see in Chapter ‘13, it is not
even a rational number! There is in fact a general procedure for finding
a general formula for sequences defined in this way (these are called
linear recursive sequences or linear difference equations) which bears a
close resemblance to elementary methods for solving linear differential
equations. This method leads to a quadratic equation when each term
of the sequence depends on the previous two terms.

The number o was called the ratio by the Greeks and in the sixteenth
century became known as the golden ratio. A rectangle whose sides are
in this ratio is called a golden rectangle and a construction for such a
rectangle is given in Book Six of the Elements of Euclid. Such a rectangle
was considered to have ideal proportions: it is characterized by the fact
that on the removal from the end of the rectangle of a square with sides
equal to the shorter sides of the rectangle the remaining rectangle is
similar to the original rectangle (and so is also a golden rectangle). Asn
increases, the ratio of successive Fibonacci numbers uy,11/u, approaches
the number a.

Proof The above formula may be proved by sttong induction on n. In
this case P(n) is the statement in the proposition.

Base case: For n = 1, the formula gives (a — 8)/v5 = ((1+v/5) = (1 -
\/5))/2\/5 =1=u.

Since the inductive formula does not apply until u3 we have also to
deal with the case n = 2 by calculation. For n = 2, the formula gives
(@® - 8%)/V5 = (o — B)/v5 = 1 = uy using the facts that o> = a + 1
and §% =+ 1.

t J.P.M. Binet was a French methematician of the early nineteenth century.
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Inductive step: Now suppose as inductive hypothesis that the formula
holds for all positive integers n such that n < k for some positive integer
k > 2. Then
Ug+1 = Ug—1+ Ux (by definition of the sequence)
= (@1 =g+ (aF-p")/V5
(by inductive hypothesis)
= (@ '1+a)-p1(1+08)/V5
(aF+1 — gF+1y/\/5
(again using @’ =a+1and B2 =8+1)
as required to prove the formula for n =k + 1.

Conclusion: Hence, by induction, the formula holds for all positive inte-
gers 1. O

Exercises

5.1 Prove by induction on = that, for all positive integers n, n® — n is
divisible by 3.

5.2 Prove by induction on m that m3 < 2™ for m > 10.
5.3 Prove by induction on n that, for all positive integers n, n > 1.

5.4 Prove by induction on n that, for any real number z # 1 and for
integers n > 0,

5.5 Prove that, for any real numbers a and b and for integers n > 0,

S (@ i) = 20+ 1)(2a +nb),

=0

5.6 For non-negative integers n define the number u, inductively as
follows.

Ug = 0,
U+l = Jug+ 3k for k£ > 0.

Prove that u, = n3"~! for all non-negative integers n.
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5.7 Prove by induction on n that, for any real numbers z and y and for
non-negative integers m and n:

(i) z"y" = (zy)™;
(ii) g™t = g™z,
(iii) (™) = g™".
[These statements are known as the laws of exponents or the laws of
indices.]



Problems I: Mathematical statements and
proofs

1. By using truth tables prove that, for all statements P and @, the
statement ‘P = @’ and its contrapositive ‘(not Q) = (not P)’ are equiv-
alent. In Example 1.2.3 identify which statement is the contrapositive
of statement (i) (f(a) = 0 = a > 0). Find another pair of statements in
that list which are the contrapositives of each other.

2. By using truth tables prove that, for all statements P and @, the three
statements (i) ‘P = @, (ii) ‘(P or Q) & @’ and (iii) ‘(P and Q) & P’
are equivalent.

3. Prove that the three basic connectives ‘or’, ‘and’ and ‘not’ can all be
written in terms of the single connective ‘notand’ where ‘P notand @’
is interpreted as ‘not (P and Q).

4. Prove the following statements concerning positive integers a, b and
c.

(i) (a divides b) and (a divides ¢) = a divides (b+ ¢).
(ii) (a divides b) or (a divides ¢) = a divides be.

5. Which of the following conditions are necessary for the positive inte-
ger n to be divisible by 6 (proofs not necessary)?

(i) 3 divides n.
(ii) 9 divides n.
(iii) 12 divides n.
(iv) n=12.
(v) 6 divides n?.
(vi) 2 divides n and 3 divides n.

53
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(vii) 2 divides n or 3 divides n.

Which of these conditions are sufficient?

6. Use the properties of addition and multiplication of real numbers
given in Properties 2.3.1 to deduce that, for all real numbers a and b,

(i) ax0=0=0xa,
(ii) (—a)b= —ab= a(-b),
(iii) (—a)(-b) = ab.

7. Prove by contradiction the following statement concerning an integer
n.

n? is even = n is even.

[You may suppose that an integer n is odd if and only if n = 2¢ + 1 for
some integer ¢. This is proved later as Proposition 11.3.4.]

8. Prove the following statements concerning a real number z.

(i) 22~z-2=0&z=-lorz=2.
(i) z22~z-2>0&z<-lorz>2

9. Prove by contradiction that there does not exist a largest integer.

[Hint: Observe that for any integer n there is a greater one, say n + 1.
So begin your proof

Suppose for contradiction that there is a largest integer. Let this integer be
n. ...

10. What is wrong with the following proof that 1 is the largest integer?

Let n be the largest integer. Then, since 1 is an integer we must have 1 < n.
On the other hand, since n? is also an integer we must have n? < n from
which it follows that n < 1. Thus, since 1 < nand n < 1 we must have n = 1.
Thus 1 is the largest integer as claimed.

What does this argument prove?

11. Prove by contradiction that there does not exist a smallest positive
real number.

12. Prove by induction on n that, for all positive integers n, 3 divides
4" + 5.
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13. Prove by induction on n that n! > 2™ for all integers n such that
nz4.

14. Prove Bernoulli’s inequality
1+z)"214+nz

for all non-negative integers n and real numbers z > —1.

15. For which non-negative integer values of n is n! > 3”7

16. Prove by induction on n that

i 1 _n
“~i(i+1) n+1

for all positive integers n.

17. For a positive integer n the number a,, is defined inductively by

ay = 1,
6ar + 5
a = for k a positive integer.
k+1 ar +2 p 63

Prove by induction on n that, for all positive integers, (i) a, > 0 and
(ii) a, < 5.

n
18. Given a sequence of numbers a(1), a(2), ..., the number Ha(i) is
i=1

defined inductively by

(1) Ha(i) = a(1), and

g=1
k+1

k
() JJ a0 = ( a(i)) a(k+1)fork>1.

i=1 =

Prove that H(l + mzi_l) =(1-22")/(1 —z) for z # 1.

i=1
What happens if z = 17
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19. Prove that

I(-5) ="

for integers n > 2.

20. Prove that, for a positive integer n, a 2™ x 2™ square grid with any
one square removed can be covered using L-shaped tiles of the following

shape: |

21. Suppose that z is a real number such that z + 1/z is an integer.
Prove by induction on n that z™ + 1/z™ is an integer for all positive
integers n.

[For the inductive step consider (z* + 1/z*)(z + 1/z).]

22. Prove that
13 ([]=)
=1 i=1
for positive integers n and positive real numbers z;.

{It does not seem to be possible to give a direct proof of this result using
induction on n. However, it can be proved for n = 2™ for m > 0 by
induction on m. The general result now follows by proving the converse
of the usual inductive step: if the result holds for n = k + 1, where k is
a positive integer, then it holds for n = k.]

23. For non-zero real numbers z we may extend Definition 5.3.3 to a
definition of powers z™ for all integers n by defining =™ = 1/z™ for
integers m > 0. With this definition prove the laws of exponents for any
non-zero real numbers z and y and integers m and n:

(i) z"y" = (zy)";
(1) ™" = g™z
(iii) (™)™ = ™.

[Hint: Start from Exercise 5.7.]
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24. Fibonacci’s rabbit problem may be stated as follows:

How many pairs of rabbits will be produced in a year, beginning with a single
pair, if in every month each pair bears a new pair which become productive
from the second month on?

Assuming that no rabbits die, express the number after n months as a
Fibonacci number and hence answer the problem. Using a calculator
and the Binet formula (Proposition 5.4.3) find the number after three
years.

25. Let u, be the nth Fibonacci number (Definition 5.4.2). Prove, by
induction on n (without using the Binet formula Proposition 5.4.3), that

Um+n = Um—1Un + Unlintl

for all positive integers m and n.
Deduce, again using induction on n, that u,, divides unyy,.

26. Suppose that n points on a circle are all joined in pairs. The points
are positioned so that no three joining lines are concurrent in the interior
of the circle. Let a, be the number of regions into which the interior of
the circle is divided. Draw diagrams to find a,, for n < 6.

Prove that a,, is given by the following formula.

(1) () ()

1+ n(n - 1)(n® — 5n 4 18)/24.

an

[Here ( , ) denotes the binomial coefficient ————— discussed in more

ml
ri(m —r)!
detail in Chapter 12.]



