

1. Find the fixed end moments for the fixed beam shown in figure 1.
2. Determine the moments and reactions at the supports of the fixed-fixed beam which is loaded by a concentrated load of 10 kN at a point 3 m from the left support. The span of the beam is 8 m . Use method of consistent deformations. EI is constant. [16]
3. The pin jointed truss shown in Figure2 is loaded with two point loads of 20 kN and 10 kN at the upper joints. Evaluate the forces in the members using the method of tension coefficients.
4. Analyze the continuous beam shown in Figure3 by Clapeyron's theorem of three moments. Also sketch the BMD and SFD.
5. Determine the vertical displacement of joint C of the truss. Cross sectional area of each member $A=300 \mathrm{~mm} 2, E=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$. Solve using Castigliano's theorem shown in Figure4.
6. A moving load of $50 \mathrm{kN} / \mathrm{m}$ and, 4 m long, crosses a girder of 16 m span. Calculate the maximum B.M at a section 5 m from the left hand support.
7. Four equal loads of 60 kN each, equally spaced at 2 m apart followed by a uniformly distributed load of $40 \mathrm{kN} / \mathrm{m}$ run at a distance of 2 m from the last 60 kN , cross a girder of 20 m span from right to left. Using influence lines, calculate the S.F and B.M at a section 8 m from the left support, when the leading 60 kN load is 5 m from this support.
8. The resultant of two forces acting at a point is 75 kN . It is observed that one force is double than that of the other and if the direction of one of them is reversed the resultant becomes 35 kN . Find the magnitudes of forces and the angle between them graphically.
