Mathematics - MA GATE Syllabus
#1
Linear Algebra: Finite dimensional vector spaces; Linear transformations and their matrix representations, rank; systems of linear equations, eigen values and eigen vectors, minimal polynomial, Cayley-Hamilton Theroem, diagonalisation, Hermitian, Skew-Hermitian and unitary matrices; Finite dimensional inner product spaces, Gram-Schmidt orthonormalization process, self-adjoint operators.

Complex Analysis: Analytic functions, conformal mappings, bilinear transformations; complex integration: Cauchy's integral theorem and formula; Liouville's theorem, maximum modulus principle; Taylor and Laurent's series; residue theorem and applications for evaluating real integrals.

Real Analysis: Sequences and series of functions, uniform convergence, power series, Fourier series, functions of several variables, maxima, minima; Riemann integration, multiple integrals, line, surface and volume integrals, theorems of Green, Stokes and Gauss; metric spaces, completeness, Weierstrass approximation theorem, compactness; Lebesgue measure, measurable functions; Lebesgue integral, Fatou's lemma, dominated convergence theorem.

Ordinary Differential Equations: First order ordinary differential equations, existence and uniqueness theorems, systems of linear first order ordinary differential equations, linear ordinary differential equations of higher order with constant coefficients; linear second order ordinary differential equations with variable coefficients; method of Laplace transforms for solving ordinary differential equations, series solutions; Legendre and Bessel functions and their orthogonality.

Algebra: Normal subgroups and homomorphism theorems, automorphisms; Group actions, Sylow's theorems and their applications; Euclidean domains, Principle ideal domains and unique factorization domains. Prime ideals and maximal ideals in commutative rings; Fields, finite fields.

Functional Analysis: Banach spaces, Hahn-Banach extension theorem, open mapping and closed graph theorems, principle of uniform boundedness; Hilbert spaces, orthonormal bases, Riesz representation theorem, bounded linear operators.

Numerical Analysis: Numerical solution of algebraic and transcendental equations: bisection, secant method, Newton-Raphson method, fixed point iteration; interpolation: error of polynomial interpolation, Lagrange, Newton interpolations; numerical differentiation; numerical integration: Trapezoidal and Simpson rules, Gauss Legendre quadrature, method of undetermined parameters; least square polynomial approximation; numerical solution of systems of linear equations: direct methods (Gauss elimination, LU decomposition); iterative methods (Jacobi and Gauss-Seidel); matrix eigenvalue problems: power method, numerical solution of ordinary differential equations: initial value problems: Taylor series methods, Euler's method, Runge-Kutta methods.

Partial Differential Equations: Linear and quasilinear first order partial differential equations, method of characteristics; second order linear equations in two variables and their classification; Cauchy, Dirichlet and Neumann problems; solutions of Laplace, wave and diffusion equations in two variables; Fourier series and Fourier transform and Laplace transform methods of solutions for the above equations.

Mechanics: Virtual work, Lagrange's equations for holonomic systems, Hamiltonian equations.

Topology: Basic concepts of topology, product topology, connectedness, compactness, countability and separation axioms, Urysohn's Lemma.

Probability and Statistics: Probability space, conditional probability, Bayes theorem, independence, Random variables, joint and conditional distributions, standard probability distributions and their properties, expectation, conditional expectation, moments; Weak and strong law of large numbers, central limit theorem; Sampling distributions, UMVU estimators, maximum likelihood estimators, Testing of hypotheses, standard parametric tests based on normal, X2 , t, F - distributions; Linear regression; Interval estimation.

Linear programming: Linear programming problem and its formulation, convex sets and their properties, graphical method, basic feasible solution, simplex method, big-M and two phase methods; infeasible and unbounded LPP's, alternate optima; Dual problem and duality theorems, dual simplex method and its application in post optimality analysis; Balanced and unbalanced transportation problems, u -u method for solving transportation problems; Hungarian method for solving assignment problems.

Calculus of Variation and Integral Equations: Variation problems with fixed boundaries; sufficient conditions for extremum, linear integral equations of Fredholm and Volterra type, their iterative solutions.
Reply



Possibly Related Threads…
Thread Author Replies Views Last Post
  GATE 2019 MA - Mathematics Question Paper and Answer key kalyanasundari 3 17,102 08-28-2019, 12:25 PM
Last Post: deepa12
  GATE 2020 All Subjects Syllabus kalyanasundari 31 19,156 08-28-2019, 12:07 PM
Last Post: deepa12
  GATE MA- Mathematics previous 9 years solved question papers chichumban 6 30,371 08-27-2019, 03:28 PM
Last Post: TafzirAzad
  GATE 2018 Mathematics (MA) Question Paper and answer samson 2 5,183 08-27-2019, 03:27 PM
Last Post: TafzirAzad
  GATE Syllabus of All Subjects abhilash 1 43,040 01-27-2017, 12:01 PM
Last Post: 3dtech
  GATE 2018- Revised and updated Syllabus of all branches gateman 8 10,508 09-13-2015, 12:20 AM
Last Post: luzybabu
  GATE 2011 Syllabus of All subjects and Combinations bijumk 1 8,338 11-10-2013, 01:08 PM
Last Post: selviramalingam
  EC gate syllabus 2014 Chandra Lekha 0 4,213 06-05-2013, 06:15 PM
Last Post: Chandra Lekha
  GATE 2013 syllabus for all subjects download nitinps 10 56,303 02-03-2013, 01:34 PM
Last Post: riya_sinha2010@yahoo.com
  GATE Syllabus for EE - Electrical Engineering abhilash 2 7,148 12-10-2012, 12:22 PM
Last Post:



Users browsing this thread:
1 Guest(s)

Powered By MyBB, © 2002-2024 Melroy van den Berg.
Disclaimer | About Us